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Clasificacion homotdpica de algebras de camino de Leavitt simples
puramente infinitas

En esta tesis investigamos en qué medida las teorias de homologia escisivas, invariantes
por homotopia y matricialmente estables nos ayudan a distinguir dos algebras de camino de
Leavitt L(E) y L(F) de grafos E y F sobre un anillo conmutativo ¢. Este trabajo estéd dividido
en dos partes.

En la primera (Capitulo 2) consideramos algebras de camino de Leavitt de grafos gen-
erales sobre anillos conmutativos arbitrarios. La K-teoria algebraica bivariante kk es la teoria
de homologia universal con respecto a las propiedades mencionadas; probamos un teorema
de estructura para algebras de camino de Leavitt unitales en kk. Mostramos que bajo leves
hipdtesis en el anillo £, para un grafo E con finitos vértices y matriz de incidencia reducida Ag,
la estructura de L(E) depende solamente en las clases de isomorfia del conicleo de la matriz
I — Ag y el de su transpuesta, que son respectivamente los grupos KH'(L(E)) = kk_,(I(E), £)
y KHy(L(E)) = kk(¢, L(E)). Por tanto, si L(E) y L(F) son édlgebras de Leavitt unitales tales
que KHy(L(E)) = KHy(L(F)) y KH'(I(E)) = KH'(L(F)) entonces ninguna teoria de ho-
mologia con las tres propiedades mencionadas puede distinguirlas. Ademds probamos que,
para algebras de camino de Leavitt, kk tiene varias propiedades similares a las que la K-teoria
bivariante de Kasparov tiene para C*-algebras de grafo, incluyendo anédlogos a los Teoremas
de coeficientes universales y de Kiinneth de Rosenberg y Schochet.

En la segunda parte (Capitulo 3) abordamos el problema de clasificacion de algebras
de camino de Leavitt simples puramente infinitas de grafos finitos sobre un cuerpo ¢. Es
un problema abierto determinar cudndo el par (Ko(L(E)), [1)]), que consiste del grupo de
Grothendieck junto con la clase [1,)] de la identidad, es un invariante completo para la
clasificacion, a menos de isomorfismos, de dlgebras de camino de Leavitt de grafos finitos
que son simples puramente infinitas. Nosotros mostramos que (Ko(L(E)), [1,z)]) es un invari-
ante completo para el problema de clasificacion de dichas dlgebras a menos de equivalencia
homotdpica polinomial. Para esto, desarrollamos atin mas el estudio de la K-teoria algebraica
bivariante de algebras de Leavitt inciada en la parte previa y obtenemos otros resultados de
interés.

Palabras claves : K-teoria algebraica bivariante, clasificacion homotopica, algebras
de camino de Leavitt, algebras simples puramente infinitas, teorema de coeficientes uni-
versales.






Homotopy classification of purely infinite simple Leavitt path algebras

In this thesis we investigate to what extent homotopy invariant, excisive and matrix stable
homology theories help one distinguish between the Leavitt path algebras L(E) and L(F') of
graphs E and F over a commutative ground ring £. This work is divided in two parts.

In the first one (Chapter 2) we consider Leavitt path algebras of general graphs over
general ground rings. Bivariant algebraic K-theory kk is the universal homology theory with
the properties above; we prove a structure theorem for unital Leavitt path algebras in kk. We
show that under very mild assumptions on ¢, for a graph E with finitely many vertices and
reduced incidence matrix Ag, the structure of L(E) depends only on the isomorphism classes
of the cokernels of the matrix / — Ag and of its transpose, which are respectively the kk groups
KHY(L(E)) = kk_(I(E), ¢) and KH(L(E)) = kk(¢, L(E)). Hence if L(E) and L(F) are unital
Leavitt path algebras such that KHy(L(E)) = KHy(L(F)) and KH'(I(E)) = KH'(L(F)) then
no homology theory with the above properties can distinguish them. We also prove that
for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant
K-theory has for C*-graph algebras, including analogues of the Universal coefficient and
Kiinneth theorems of Rosenberg and Schochet.

In the second part (Chapter 3) we address the classification problem for purely infinite
simple Leavitt path algebras of finite graphs over a field €. There is an open question which
asks whether the pair (Ko(L(E)), [11)]), consisting of the Grothendieck group together with
the class [1,x) ] of the identity, is a complete invariant for the classification, up to algebra
isomorphism, of those Leavitt path algebras of finite graphs which are purely infinite simple.
We show that (Ko(L(E)), [1.)]) 1s a complete invariant for the classification of such alge-
bras up to polynomial homotopy equivalence. To prove this we further develop the study of
bivariant algebraic K-theory of Leavitt path algebras started in the previous part and obtain
several other results of independent interest.

Keywords: Bivariant algebraic K-theory, homotopy classification, Leavitt path al-
gebra, purely infinite simple algebra, universal coefficient theorem.

11






Acknowledgement / Agradecimientos

I want to thanks the referees for their meticulous reading of this Thesis. Also, I want to
thanks Gene for all his support and enthusiasm.

A Willie por su paciencia y buena predisposicion.

A mis viejos por toda la ayuda que me brindaron todos estos afios.

A todos mis amigos que me acompaifiaron durante todos estos afios.

A Belén, aunque sigo sin saber porqué.






Contents

Introduccion
Introduction

1 Preliminaries
Resumendel capitulo . . . . . . . . . . ... ...
1.1 Homotopy and extensions . . . . . . . . . . o v v it
1.2 Homology theories and algebraic bivariant K-theory . . . . ... ... ...
1.3 Cohn and Leavitt path algebras . . . . .. ... ... ... ... .......

2 kk-theory and Leavitt path algebras
Resumendel capitulo . . . . . . . . . . . .. ...
2.1 The Cohn path algebrain kk . . . ... ... ... ... .. .........
2.1.1  Proof of Theorem 2.1, partI . . .. ... ... ... ... ......
2.1.2  Proof of Theorem 2.1, partII . . . . . .. ... ... ... .. ....
2.1.3 Proof of Theorem 2.1, partIII . . . . .. ... ... .. .......
2.1.4 Proof of Theorem 2.1, conclusion . . . . . .. . ... ... .....
22 Atrianglefor L(E) . . .. .. .. . ... e
2.3 A structure theorem for Leavitt path algebrasinkk . . . ... ... .....
2.4 A canonical filtration in kk(L(E),R) . . . . . . . . . . e

3 Homotopy classification
Resumendelcapitulo . . . . . . . .. ... ..
3.1 Purely infinite algebras and K-theory . . . . . . ... .. ... ... ...
3.2  kk-maps ashomotopy maps . . . . . . . ...
3.2.1 Non-purely infinitecase . . . ... ... ... ... ... .. ...,
3.2.2 Lifting K-theory maps to algebramaps:Ky . . . . . . ... ... ...
3.2.3 Lifting K-theory maps to algebra maps: Kpand K; . . . .. ... ..
3.2.4 Lifting kk-maps to algebramaps . . . . . .. ... ... ... ...
3.3 Homotopy classification . . . . .. .. ... ... ... .0
3.4 Moreon algebraextensions . . . . . . . . ... e e

Vil

ix

xvii

13
13
14
15
16
17
18
18
21
23



CONTENTS

3.5 Maps into tensor products with L,

viil



Introduccion

Un grafo dirigido E consiste de un conjunto E° de vértices y un conjunto de aristas E' junto
con funciones de rango y fuente , s : E! — E°. Esta tesis se ocupa de las dlgebras de camino
de Leavitt L(E) de un grafo dirigido E sobre un anillo conmutativo ¢ ([1]). Cuando ¢ = C,
L(E) es un algebra normada; su completacion es la C*-algebra de grafo C*(E). Un grafo E
se dice finito o numerable si E° y E! son ambos finitos o numerables. Un resultado de Cuntz
y Rgrdam ([25, Teorema 6.5]) dice que las dlgebras de grafo simples puramente infinitas
asociadas a grafos finitos, i.e. las dlgebras de Cuntz-Krieger simples puramente infinitas, se
clasifican a menos de isomorfismos (estables) mediante el grupo de Grothendieck K. Es un
problema abierto determinar si un resultado similar vale para algebras de Leavitt [3]. En esta
tesis probamos que K| clasifica dlgebras de camino de Leavitt a menos de (M;-) equivalencia
homotépica. En el siguiente teorema y en el resto de la tesis, usamos la siguiente notacion.
Notamos ¢, : R — M>R a la inclusion de un dlgebra en la esquina superior izquierda del
algebra de matrices, ¢ =~ ¢ para indicar que dos morfismos de dlgebras ¢ y i son (polino-
mialmente) homotdpicos y ¢ =, ¢ para indicar que (¢ = . También escribimos [1x]
para la clase de la identidad de un dlgebra unital en el grupo K. El resultado principal de
esta tesis es el siguiente.

Theorem 0.1. Sean E y F grafos finitos y € un cuerpo. Supongamos que L(E) y L(F) son
simples puramente infinitas. Sea & : Ko(L(E)) — Ko(L(F)) un isomorfismo de grupos. En-
tonces

o Existen morfismos de dlgebras no nulos ¢ : L(E) < L(F) : ¢ tales que Ky(¢) = &,
Ko) = €7, ¢ =, idiey y dY ~w, idir).

o Si ademds E([11k)]) = [lur)] entonces ¢ y  pueden ser tomados como morfismos
unitales tales que Yy¢ ~ idyg) y ¢y = 1dyp).

El resultado de clasificacion de dlgebras de Cuntz-Krieger usa la K-teoria bivariante de
Kasparov, C* — KK, que es universal entre los funtores de la categoria de C*-algebras sep-
arables en categorias trianguladas que son escisivos, estables por operadores compactos e
invariantes por homotopias continuas. Motivados por esto, analizamos el problema de clasi-
ficacion para algebras de camino de Leavitt en términos de la K-teoria bivariante algebraica
J : Alg, — kk introducida en [15] y [24], que es universal entre las teorias de homologia de la
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Introduccion

categoria de £-algebras que son escisivas, matricialmente estables e invariantes por homotopia
polinomial. Acé una feoria de homologia de la categoria Alg, de algebras es simplemente
un funtor X : Alg, — 7 con valores en una categoria triangulada 7". Si S es un conjunto y
A € Alg,, escribimos MgA por el dlgebra de matrices M : § XS — A de soporte finito. Dec-
imos que una teoria de homologia X es S -estable si para todo s € § y A € Alg,, la inclusion
ty 1 A = MsA, 1,(a) = €, ®a induce un isomorfismo X(t;). Notamos E°y E' alos conjuntos
de vértices y aristas del grafo E. Decimos que X es E-estable si es E° LI E' LI N-estable. Asi,
si E° y E' son ambos numerables, la E-estabilidad es lo mismo que la estabilidad respecto de
M., = M. Para dos dlgebras A, B € Alg,, la afirmacién j(A) = j(B) es equivalente a la afir-
macion que X(A) = X(B) para toda teoria de homologia escisiva, invariante por homotopia y
E-estable X. Sea Q : kk — kk la inversa del funtor de suspension; si A, B € Alg,, notamos

kk,(A, B) = homy(j(A), Q" j(B)), kk(A,B) = kko(A, B).

Por [15, Teorema 8.2.1], fijando en la primera variable el anillo base, recobramos la K-teoria
homotoépica de Weibel KH [32]:

kk,(¢, B) = KH,(B).

Si € es Z o un cuerpo, entonces KH.(L(E)) = K.(L(E)) es la K-teoria algebraica de Quillen.
Sea
KH"(B) := kk_,(B, ?).

Recordemos que un vértice v € E° es regular si emite un nimero no nulo y finito de
aristas y que es singular en caso contrario. Escribimos reg(E) y sing(E) a los conjuntos de
vértices regulares y singulares. Sea Ay € 7resEXE |9 matriz cuya entrada (v, w) es el nimero
de aristas que van desde v hastaw y sea I € ZE"reeE) 1 matriz que resulta de remover a la
matriz identidad las columnas que corresponden a los vértices singulares. Se sigue de [4] que
si KHo(0) = Z, KH_;(£)=0 y E es finito, entonces para la matriz de incidencia reducida Ag
tenemos que

KHy(L(E)) = Coker(I — A%). (1)

Aqui mostramos (ver Seccion 2.3) que, abusando de notacion, y escribiendo / por I,
KH'(L(E)) = Coker(I — Ap). (2)

Para n > 0, notamos L, al dlgebra de caminos de Leavitt del grafo con un vértice y n bucles.
Asi Ly = £y L, = {[t,"']. Probamos el siguiente teorema de estructura.

Theorem 0.2. Supongamos que KHy(t) = Z y KH_(£)=0. Sea E un grafo tal que E°
es finito. Sean d,,...,d, , d\d;;, los factores invariantes del grupo de torsion T(E) =
tors(Ko(L(E))), s = #sing(E) y r = tk(KH'(I(E))). Sea j : Alg, — kk la teoria de ho-
mologia escisiva, invariante por homotopia polinomial y E-estable universal. Entonces

JE) = j(Ly® Ly & D) Ly

i=1



Introduccion

En particular, toda dlgebra de caminos de Leavitt unital con K H, trivial es cero en kk. Por
ejemplo, tanto L, como su empalme de Cuntz L,- ([25]) son cero en kk. Ademads tenemos el
siguiente corolario; desde aqui, en toda afirmacién que involucre la imagen por j de finitas
algebras de caminos de Leavitt de grafos E, ..., E,, se entiende que j se refiere ala j U, E;-
estable.

Corollary 0.3. Sea ¢ como en el Teorema 0.2. Sean E y F grafos con finitos vértices. Las
siguientes afirmaciones son equivalentes.

i) JI(E)) = j(L(F)).
i) KHy(L(E)) = KHy(L(F)) y KH\(L(E)) = KH'(L(F)).
iii) KHy(L(E)) = KHy(L(F)) y #sing(E) = #sing(F).

Proof. No es dificil de ver , usando (1) y (2) (ver Lema 2.16) que los grupos KHy(L(E)) y
KH'(L(E)) tienen subgrupos de torsién isomorfos y que

#sing(E) = tk KHy(L(E)) — tk KH'(I(E)). 3)
El corolario se sigue inmediatamente de esto y del teorema anterior. O

Para poner el resultado previo en perspectiva, recordemos que E. Ruiz y M. Tomforde
mostraron en [29] que si € es un cuerpo, L(E) y L(F) son simples y tanto E como F tienen
emisores infinitos, entonces la condicion iii) del corolario es equivalente a que L(E) y L(F)
sean Morita equivalentes. Nuestros resultados se aplican de forma mucho mas general, pero
son en principio més débiles, visto que dlgebras kk-isomorfas pueden no ser Morita equiv-
alentes. Por ejemplo L, no es Morita equivalente al anillo 0. Observar que la identidad (3)
nos ayuda a reemplazar las condiciones sobre # sing por condiciones puramente K-tedricas u
homolégicas sobre KH'.

En el siguiente teorema y en adelante, escribimos [A,R] y [A, R]y, por el conjunto de
clases de homotopia y M,-homotopia de morfismos A — R. Si ademds, A y R son unitales,
escribimos [A, R]; por el conjunto de clases de homotopia de morfismos unitales A — R.
Recordemos que un anillo R es K,,-regular si el morfismo canénico K,,(R) — K,(R[ty,...,t,])
es un isomorfismo para todo m. Por ejemplo, toda dlgebra de Leavitt es K,-regular para todo
n € Z, por el Ejemplo 2.8. Ademas del Teorema de estructura 0.2, podemos calcular los
grupos de K-teoria algebraica bivariante de dlgebras de caminos de Leavitt en algunos casos
particulares como muestra el siguiente teorema.

Theorem 0.4. Sea € un cuerpo. Sean E un grafo finito tal que L(E) es simple y R un dlgebra
unital simple puramente infinita. Supongamos que R es K-regular. Entonces el morfismo
canonico

[L(E), Ry, \ {0} = kk(L(E),R)

es un isomorfismo de monoides.

X1



Introduccion

El teorema previo es el resultado técnico principal y es la clave para la demostracion
del Teorema 0.1. Gracias a la observacién 3.32, podemos ver al Teorema 0.4 como una
generalizacion del teorema de Ara, Goodearl y Pardo [5] que dice que si R es como en el
teoremay V(R) es el monoide de clases de equivalencia Murray-von Neumann sobre matrices
idempotentes en MR, entonces Ky(R) = V(R) \ {0}. De hecho, el tltimo resultado es usado
en la demostracion del Teorema 0.4.

En similitud con el caso de dlgebras de operadores, probamos (Corolario 2.23) que si £y
E son como en el Teorema 0.2 y R € Alg,, entonces existe una sucesion exacta corta

[KHo,y"KH\]

0 — Ext.(KHy(L(E)), KH,1(R)) — kk,(L(E), R)
Hom(K Hy(L(E)), KH,(R)) ® Hom(Ker(I — AL), KH,.1(R)) — 0. (4)

Observar que, para la K-teoria topoldgica, K;OP(C*(E)) = Ker(I/ - A?}), por tanto, sustituyendo
KH 'y kk por K*? y KK en (4) obtenemos el UCT de [28, Teorema 1.17]. Mas atn, en la
Proposicion 2.26 probamos un andlogo al teorema Kiinneth de [28, Teorema 1.18].

Hasta aqui en esta introduccidn s6lo discutimos resultados para E con finitos vértices y €
tal que KHy(¢) = Zy KH_1¢ = 0. Sin hipétesis en £ mostramos que si £ y F tienen finitos
vértices y 6 € kk(L(E), L(F')) entonces

0 es un isomorfismo <= KHy(0) y KH,(0) son isomorfos. 5

Sin embargo, no es cierto que las dlgebras de camino de Leavitt unitales con KH, and KH,
isomorfos son kk-isomorfas, incluso cuando ¢ es un cuerpo (ver Observacion 2.12). Por tanto,
en vista del Corolario 0.3, el par (KH,, KH") es un mejor invariante para algebras de camino
de Leavitt que el par (KHy, KH,).

Sean €'y E arbitrarios y sea R € Alg,. Si/ es un conjunto, escribimos

R =R
i€l
para notar al dlgebra de funciones I — R de soporte finito. Sea X : Alg, — 7 una
teoria de homologia escisiva, invariante por homotopia polinomial y E-estable. Supongamos

ademas que las sumas directas de cardinal a lo sumo #E° existen en 7y que para cualquier
familia de dlgebras {R; : i € I} el morfismo natural

P xw) - x P ry

i€l i€l

es un isomorfismo si #/ < #E°. Probamos en el Teorema 2.7 que existe un trigngulo distin-
guido en 7 de la siguiente forma

X(R)2E) T X (RYE) L X(L(E)®R). 6)

Xii



Introduccion

Esto se aplica, en particular, cuando tomamos X = KH, generalizando [4, Teorema 8.4]. Por
tanto, obtenemos una sucesion exacta larga

I-A!
KH,,1(L(E) ® R)*) — KH,(R)"™*® 5 KH,(R)*" — KH,(L(E) ®R). )

Cuando R es regular supercoherente podemos sustituir KH por K en (7), generalizando [4,
Teorema 7.6] (ver Ejemplo 2.8). No se sabe si existen sumas directas infinitas en kk; sin
embargo las sumas directas finitas existen, y j conmuta con ellas. Entonces cuando E° es
finito y ¢ es arbitrario, podemos poner X = j en el resultado previo y obtener un tridngulo
distinguido

JRYE® i 4 JRF — j((E)®R). ®)

Este tridngulo es el punto de partida que usamos para establecer todos los resultados sobre
algebras de Leavitt en esta tesis.
Desde ahora asumimos, a menos que se especifique lo contrario, que £ s un cuerpo.
También probamos otros resultados que pensamos que tienen interés en si mismo. Por
ejemplo tenemos el siguiente teorema, probado en el Corolario 3.19.

Theorem 0.5. Sean E un grafo tal que L(E) es simple y sea R un dlgebra unital simple
puramente infinita.

i) Si E es numerable entonces L(E) es isomorfo a una subdlgebra de M R.
ii) Si E es finito y [1g] = 0 en Ky(R), entonces L(E) es isomorfo a una subdlgebra unital de R.

iii) Si E es finito, entonces L(E) es isomorfo a una subdlgebra de R.

En el siguiente teorema y en adelante, usaremos la nocion de anillo regular supercoherente
de [11]. Por ejemplo, L(E) es regular supercoherente para todo grafo finito E ([1, Lema
6.4.16]).

Theorem 0.6. Sea E un grafo finito tal que L(E) es simple y R un dlgebra unital sim-
ple puramente infinita, regular supercoherente. Entonces [L(E),L,], = [L(E), La]m, \ {0},
[L(E),R® Ly]; = [L(E),R® Ly]m, \ {0}, y ambos conjuntos tienen exactamente un elemento
cada uno.

En particular, el Teorema 0.6 implicaque sid : L, = L, ® L, d(x) = 1®xy ¢ : L, —
L, ® L, es un homomorfismo no nulo, entonces ¢ ~,;, d y que si ¢ es unital entonces ¢ =~ d.

Por (2) y [16, Teorema 5.3], cuando E es finito y regular KH'(L(E)) es isomorfo al grupo
de extensiones de la C*-dlgebra de E por el dlgebra de operadores compactos. Veremos que
KH'(L(E)) est4 también vinculada a las extensiones

0->M,—>E—-LE)—O.

Xiil



Introduccion

Uno puede formar un monoide abeliano de clases de homotopia de tales extensiones (ver
Seccién 1.1); escribimos Ext(L(E)) para su completacién a grupo. Cuando E° es finito y E!
es numerable, existe un morfismo natural

Ext(L(E),R) — kk_{(L(E), R). C))

Nosotros probamos en la Proposicion 2.15 que, bajo la suposicion del Teorema 0.2, si ademas
E no tiene fuentes y R = ¢, entonces el morfismo (9) es sobreyectivo. Mas atin, tenemos lo
siguiente

Theorem 0.7. Sea E un grafo finito tal que L(E) is simple. Sea R un dlgebra de division o
un dlgebra unital simple puramente infinita y Ky-regular. Entonces el morfismo natural (9)
es un isomorfismo

Ext(L(E), R) — kk_;(L(E), R).

Si ademas Ky(L(E)) es de torsion, entonces para todo R como en el Teorema 0.7 (en
particular, para R = { y toda algebra de caminos de Leavitt unital simple puramente infinita
R), tenemos

Ext(L(E),R) = Ext%(Ko(L(E)), Ky(R)). (10)

Esta tesis estd organizada de la siguiente manera: En el Capitulo 1 daremos los prelim-
inares. En la primera seccién recordaremos las nociones de homotopia algebraica, probare-
mos algunos lemas elementales sobre ella, y los usaremos para definir, para cada par de
algebras A y R con R unital, un grupo &Ext(A, R) de clases de homotopia de extensiones de
A por M, R. Luego recordarmeos algunas propiedades bésicas sobre kk y cuasi-morfismos y
probaremos algunos lemas técnicos. En la ultima seccién recordaremos las definiciones de
algebras de camino de Cohn y de Leavitt.

En el capitulo 2 trabajaremos con algebras de camino de Leavitt sobre un anillo com-
mutativo €. Todos los resultados de este capitulo provienen de [13]. La Seccién 2.1 estd
dedicada a la caracterizacion de la imagen por j : Alg, — kk del dlgebras de camino de Cohn
C(E) de grafo E. El dlgebra C(E) recibe un morfismo canénico ¢ : ¢£” — C(E). Probamos,
en el Teorema 2.1, que la teoria de homologia esciva, invariante por homotopia polinomial y
E-estable universal j manda al morfismo ¢ a un isomorfismo.

JE) = j(C(E)). (11)

La demostracién usa cuasi-morfismos, en el espiritu de la demostraciéon de Cuntz de la peri-
odicidad de Bott en K-teoria para C*-algebras. En la Seccién 2.2 usamos los resultados de la
Seccion 2.1 para obtener el tridngulo (8). Con este tridngulo obtenemos los resultados de las
Secciones 2.3 and 2.4. En la primera, probamos el Teorema 0.2 (Teorema 2.17), que clasifica
las algebras de camino de Leavitt en kk. En la segunda, introducimos una filtracién descen-
dente {kk(L(E),R)' : 0 < i < 2} en kk(L(E), R) para toda lgebra R y toda dlgebra de camino
de Leavitt unital L(E) y calculamos los cocientes kk(L(E), R)'/kk(L(E), R)"*! (Teorema 2.21).
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Introduccion

Usamos esto para probar el teorema de coeficienes universales (4) en el Corolario 2.23 y el
Teorema de Kiinneth en la Proposicion 2.26.

En el capitulo 3 trabajamos con dlgebras de caminos de Leavitt simples de grafos finitos
sobre un cuerpo €. Todos los resultados de este capitulo provienen de [14]. En la Seccién
3.1 recordamos los resultados de Ara, Goodearl and Pardo sobre la K-teoria de dlgebras sim-
ples puramente infinitas. También probamos (Corolario 3.10) que si R es K,-regular, simple
puramente infinita y unital, entonces K;(R) es isomorfo al grupo mo(U(R)) de componentes
conexas polinomiales del grupo de elementos inversibles de R. En la Seccion 3.2 probamos
el Teorema 0.4 (Teorema 3.12) que usamos en la Seccidn 3.3 para establecer el Teorema 0. 1
(Teorema 3.33), que es el resultado principal de esta tesis. Las Secciones 3.4 y 3.5 estan
dedicadas a probar los Teoremas 0.7 (Teorema 3.36) y 0.6 (Teorema 3.42).
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Introduction

A directed graph E consists of a set E of vertices and a set E' of edges together with source
and range functions r, s : E' — E°. This thesis is concerned with the Leavitt path algebra
L(E) of a directed graph E over a commutative ring € ([1]). When £ = C, L(E) is a normed
algebra; its completion is the graph C*-algebra C*(E). A graph E is called finite or count-
able if both E° and E! are finite or countable. A result of Cuntz and Rgrdam ([25, Theorem
6.5]) says that the purely infinite simple graph algebras associated to finite graphs, i.e. the
purely infinite simple Cuntz-Krieger algebras, are classified up to (stable) isomorphism by
the Grothendieck group Kj. It is an open question whether a similar result holds for Leav-
itt path algebras [3]. Here we prove that K, classifies simple Leavitt path algebras up to
(M>-) homotopy equivalence. In the following theorem and elsewhere, we use the following
notations. We write ¢, : R — M;R for the inclusion of an algebra into the upper left hand
corner of the matrix algebra, ¢ ~ ¥ to indicate that two algebra homomorphisms ¢ and
are (polynomially) homotopic and ¢ =, ¥ to mean that ;¢ =~ ;3. We also put [1g] for the
Ky-class of the identity of a unital algebra R. The main theorem of this thesis is the following.

Theorem 0.1. Let E and F be finite graphs and € a field. Assume that L(E) and L(F) are
purely infinite simple. Let & : Ko(L(E)) — Ko(L(F)) be an isomorphism of groups. Then

o There exist nonzero algebra homomorphisms ¢ : L(E) < L(F) :  such that Ky(¢) = &,
Ko@) = €7, 4 ~u, idye)y and ¢ ~y, idp).

o Ifmoreover &([11k)]) = [11r)] then ¢ and  can be chosen to be unital homomorphisms
such that lﬁ¢ ~ idL(E) and ¢lﬁ ~ idL(F).

The classification result of Cuntz-Krieger algebras uses Kasparov’s bivariant K-theory,
C* — KK, which is universal among functors from the category of separable C*-algebras to
triangulated categories that are excisive, stable under compact operators and invariant under
continuous homotopies. Motivated by this, we analyze the classification problem for Leavitt
path algebras in terms of the algebraic bivariant K-theory j : Alg, — kk introduced in [15]
and [24], which is universal among those homology theories of the category of {-algebras
which are excisive, matrix stable and invariant under polynomial homotopies. Here a homol-
ogy theory of the category Alg, of algebras is simply a functor X : Alg, — 7 with values in
some triangulated category 7. If § is a set and A € Alg,, we write MgA for the algebra of
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those matrices M : § X § — A which are finitely supported. We call a homology theory X
S-stable if for s € § and A € Alg,, the inclusion ¢; : A — MsA, (,(a) = € ® a induces an
isomorphism X(t,). Write E° and E' for the sets of vertices and edges of the graph E. We
call X E-stable if itis E° LU E' LI N-stable. Thus if E° and E' are both countable, E-stability
is the same as stability with respect to M, = My. For two algebras A, B € Alg,, the state-
ment j(A) = j(B) is equivalent the statement that X(A) = X(B) for any excisive, homotopy
invariant and E-stable homology theory X. Let Q : kk — kk be the inverse suspension; if
A, B € Alg,, put

kk,(A, B) = homy(j(A), Q" j(B)), kk(A, B) = kko(A, B).

By [15, Theorem 8.2.1], setting the first variable equal to the ground ring we recover Weibel’s
homotopy algebraic K-theory KH [32]:

kk,(¢, B) = KH,(B).
If ¢ is either Z or a field, then KH.(L(E)) = K.(L(E)) is Quillen’s K-theory. Set
KH"(B) := kk_,(B, ).

Recall that a vertex v € E° is regular if it emits a nonzero finite number of edges and that it
is singular otherwise. Write reg(E) and sing(E) for the sets of regular and of singular edges.
Let Ag € Z*¢EXE’ pe the matrix whose (v, w) entry is the number of edges from v to w and let
I € ZE*re(E) pe the matrix that results from the identity matrix upon removing the columns
corresponding to singular vertices. It follows from [4] that if KHy(€) = Z, KH_;(£)=0 and E°
is finite, then for the reduced incidence matrix Az we have

KHy(L(E)) = Coker(I — A%). (12)
We show here (see Section 2.3) that, abusing notation, and writing I for I,
KH'(I(E)) = Coker(I — Ap). (13)

For n > 0, let L, be the Leavitt path algebra of the graph with one vertex and n loops. Thus
Ly=(and L, = £[t,t"']. We prove the following structure theorem.

Theorem 0.2. Assume that KHy({) = Z and KH_({)=0. Let E be a graph such that
E° is finite. Let d,,...,d, , d\di. be the invariant factors of the torsion group T(E) =
tors(Ko(L(E))), s = #sing(E) and r = tk(KH'(I(E))). Let j : Alg, — kk be the universal
excisive, homotopy invariant, E-stable homology theory. Then

JUE)) = j(Ly® L & () Law)
i=1
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In particular, any unital Leavitt path algebra with trivial KH is zero in kk. For example
both L, and its Cuntz splice L,- ([25]) are zero in kk. We also have the following corollary;
here, and in any other statement which involves the image under j of the Leavitt path algebras
of finitely many graphs E|, ..., E,, j is understood to refer to the L?_, E;-stable j.

Corollary 0.3. Let € be as in Theorem 0.2. The following are equivalent for graphs E and F
with finitely many vertices.

i) JUAE)) = j(L(F)).
i) KHy(L(E)) = KHy(L(F)) and KH'(L(E)) = KH"(L(F)).
iii) KHy(L(E)) = KHy(L(F)) and #sing(E) = # sing(F).

Proof. Itis not hard to check, using (12) and (13) (see Lemma 2.16) that the groups K Hy(L(E))
and KH'(L(E)) have isomorphic torsion subgroups and that

#sing(E) = tk KHy(L(E)) — tk KH'(L(E)). (14)
The corollary is immediate from this and the theorem above. O

To put the above result in perspective, let us recall that E. Ruiz and M. Tomforde have
shown in [29] that if £ is a field, L(E) and L(F) are simple and both E and F have infinite
emitters, then condition iii) of the corollary holds if and only if L(E) and L(F) are Morita
equivalent. Our result applies far more generally, but it is in principle weaker, since kk-
isomorphic algebras need not be Morita equivalent. For example L, is not Morita equivalent
to the O ring. Observe also that the identity (14) helps us replace the graphic condition about
# sing by the purely K-theoretic or homological condition about KH".

In the next theorem and elsewhere, we write [A, R] and [A, R], for the set of homotopy
classes and M,-homotopy classes of homomorphisms A — R. If moreover, A and R are unital,
we write [A, R]; for the set of homotopy classes of unital homomorphisms A — R. Recall
that a ring R is K,-regular if the canonical map K,(R) — K,(R[ty,...,t,]) is an isomorphism
for every m. For example, every Leavitt path algebra is K,-regular for all n € Z, by Example
2.8. Besides the structure Theorem 0.2, we can also compute the bivariant K-theory groups
for Leavitt path algebras in some specific cases as the following theorem shows.

Theorem 0.4. Let € be a field. Let E be a finite graph such that L(E) is simple and R a purely
infinite simple unital algebra. Assume that R is K,-regular. Then the canonical map

[L(E), RIm, \ {0} — kk(L(E), R)
is an isomorphism of monoids.

The above theorem is the main technical result and it is key for the proof of Theorem
0.1. Thanks to Remark 3.32, we may view Theorem 0.4 as a generalization of the theorem
of Ara, Goodearl and Pardo [5] which says that if R is as in the theorem and V(R) is the
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monoid of Murray-von Neumann equivalence classes of idempotent matrices in MR, then
Ko(R) = V(R) \ {0}. In fact, the latter result is used in the proof of Theorem 0.4.

As a similarity with the operator algebra case, we prove (Corollary 2.23) that if £ and E
are as in Theorem 0.2 and R € Alg,, then there is a short exact sequence

00— EXt%(KHO(L(E)), KH,. (R)) — kk,(L(E),R) [KHoy* KHi]
Hom(KHy(L(E)), KH,(R)) ® Hom(Ker(I — AL), KH,,(R)) — 0. (15)

Observe that, for operator algebraic K-theory, K ;°p (C*(E)) = Ker(I —A",), so substituting K"
and KK for KH and kk in (15) one obtains the usual UCT of [28, Theorem 1.17]. Moreover,
in Proposition 2.26 we also prove an analogue of the Kiinneth theorem of [28, Theorem 1.18].

Up to here in this introduction we have only discussed results that hold for £ with finitely
many vertices and for € such that KHy({) = Z and KH_{¢ = 0. With no hypothesis on ¢ we
show that if E and F have finitely many vertices and 8 € kk(L(E), L(F)) then

6 is an isomorphism <= KH,(0) and KH(6) are isomorphisms. (16)

It is however not true that unital Leavitt path algebras with isomorphic KH, and KH; are

kk-isomorphic, even when ¢ is a field (see Remark 2.12). Thus in view of Corollary 0.3, the

pair (KH,, KH") is a better invariant of Leavitt path algebras than the pair (KH,, KH)).
Next let £ and E be arbitrary and let R € Alg,. If I is a set, write

R =R

i€l
for the algebra of finitely supported functions I — R. Let X : Alg, — 7 be an excisive,
homotopy invariant, E-stable homology theory. Further assume that direct sums of at most
#E° summands exist in 7~ and that for any family of algebras {R; : i € I} the natural map

is an isomorphism if #/ < #E°. We prove in Theorem 2.7 that there is a distinguished triangle
in 7 of the following form

X(R)(re2(E) Ay X(R)E") ——~ X(L(E) ® R). (17)

This applies, in particular, when we take X = KH, generalizing [4, Theorem 8.4]. Thus we
get a long exact sequence

I1-A!
KH,.,(L(E)®R)E" — KH,(R)"™¢E) —5 KH,(R)E" — KH,(L(E)® R) (18)

When R is regular supercoherent we may substitute K for KH in (18), generalizing [4, The-
orem 7.6] (see Example 2.8). Infinite direct sums are not known to exist in kk; however
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finite direct sums do exist, and j does commute with them. Hence when E° is finite and ¢ is
arbitrary, we may take X = j above to obtain a distinguished triangle

JR)EE) "t JRF — j((E)®R). (19)

This triangle is the starting point that we use to establish all the results on unital Leavitt path
algebras in this thesis.

From now on we assume, unless otherwise stated, that ¢ is a field.

We also prove other results which we think are of independent interest. For example we
have the following embedding theorem, proved in Corollary 3.19.

Theorem 0.5. Let E be a graph such that L(E) is simple and let R be a unital purely infinite
simple algebra.

i) If E is countable then L(E) embeds as a subalgebra of M.R.
ii) If E is finite and [1g] = 0 in Ky(R), then L(E) embeds as a unital subalgebra of R.
iti) If E is finite, then L(E) embeds as a subalgebra of R.

In the next theorem and elsewhere we use the notion of regular supercoherent ring from
[11]. For example, L(E) is regular supercoherent for every finite graph E ([1, Lemma
6.4.16]).

Theorem 0.6. Let E be finite graph such that L(E) is simple and R a purely infinite simple,
regular supercoherent unital algebra. Then [L(E), L], = [L(E), Lo]m, \ {0}, [L(E), R®L,], =
[L(E),R ® Ly]m, \ {0}, and both sets have exactly one element each.

In particular, Theorem 0.6 implies thatifd : L, - L, ® L,,d(x) =1 ®xand ¢ : L, —
L, ® L, is a nonzero homomorphism, then ¢ =, d and that if ¢ is unital then ¢ ~ d.

By (13) and [16, Theorem 5.3], when E is finite and regular KH'(L(E)) is isomorphic to
the group of extensions of the C*-algebra of E by the algebra of compact operators. We shall
see presently that KH'(L(E)) is also related to algebra extensions

0-M,—>E—-LE)—O.

One can form an abelian monoid of homotopy classes of such extensions (see Section 1.1);
we write Ext(L(E)) for its group completion. When E° is finite and E! is countable, there is
a natural map

Ext(L(E),R) — kk_i(L(E),R). (20)
We show in Proposition 2.15 that, under the assumptions of Theorem 0.2, if in addition E has

no sources and R = ¢, then the map (20) is onto. Moreover, we have the following.

Theorem 0.7. Let E be a finite graph such that L(E) is simple. Let R be either a division
algebra or a Ky-regular purely infinite simple unital algebra. Then the natural map (20) is

an isomorphism R
Ext(L(E),R) —> kk_,(L(E),R).
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If furthermore Ky(L(E)) is torsion, then for every R as in Theorem 0.7 (in particular, for
R = ¢ and for every purely infinite simple unital Leavitt path algebra R), we have

Ext(L(E), R) = Ext(Ko(L(E)), Ko(R)). 1)

This thesis is organized as follows:

Preliminaries are given in Chapter 1. In the first section we recall some basic notions
about algebraic homotopy, prove some elementary lemmas about it, and use them to de-
fine, for every pair of algebras A and R with R unital, a group Ext(A, R) of virtual homo-
topy classes of extensions of A by M. R. Then we recall some basic properties of kk and
quasi-homomorphisms and prove a few technical lemmas. In the last section we recall the
definitions of Cohn and Leavitt path algebras.

In chapter 2 we deal with Leavitt path algebras over a commutative ground ring £. All the
results of this Chapter are extracted from [13]. Section 2.1 is devoted to the characterization
of the image under j : Alg, — kk of the Cohn path algebra C(E) of a graph E. The algebra
C(E) receives a canonical homomorphism ¢ : ¢E” — C(E). We prove in Theorem 2.1
that the universal excisive, homotopy invariant, E-stable homology theory j maps ¢ to an
isomorphism

JE) = J(C(E)). (22)

The proof uses quasi-homomorphisms, much in the spirit of Cuntz’ proof of Bott periodic-
ity for C*-algebra K-theory. In Section 2.2 we use the result of Section 2.1 to obtain the
distinguished triangle (19). With this triangle we get the results of Sections 2.3 and 2.4.
In the first one, we prove Theorem 0.2 (Theorem 2.17) classifying Leavitt path algebras in
kk. In the second one, we introduce a descending filtration {kk(L(E),R) : 0 < i < 2} on
kk(L(E), R) for every algebra R and every unital Leavitt path algebra L(E) and compute the
slices kk(L(E), R)!/kk(L(E), R)"*! (Theorem 2.21). We use this to prove the universal coeffi-
cient theorem (15) in Corollary 2.23 and the Kiinneth theorem in Proposition 2.26.

In Chapter 3 we deal with simple Leavitt path algebras of finite graphs over a field ¢.
All the results of this Chapter are extracted from [14]. In Section 3.1 we recall the results
of Ara, Goodearl and Pardo on K-theory of purely infinite simple algebras. We also prove
(Corollary 3.10) that if R is a K;-regular, purely infinite simple and unital algebra, then K;(R)
is isomorphic to the group mo(U(R)) of polynomially connected components of the group of
invertible elements of R. In Section 3.2 we prove the main technical Theorem 0.4 (Theorem
3.12) and we use it in Section 3.3 devoted to the proof of Theorem 0.1 (Theorem 3.33) which
is the main result of this thesis. Sections 3.4 and 3.5 are devoted to prove Theorems 0.7
(Theorem 3.36) and 0.6 (Theorem 3.42).
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Chapter 1

Preliminaries

Resumen del capitulo

En este capitulo damos una breve introduccion a los conceptos basicos que utilizaremos a lo
largo de la tesis. El mismo se divide en tres secciones.

Por un lado, en la primer seccion, recordamos el concepto homotopia polinomial e in-
troducimos la nocién de M,-homotopia. Para cada dlgebra A y para cada ideal B < R de
una C,-algebra R, le damos una estructura de monoide abeliano al conjunto de clases de M-
homotopia [A, B], de morfismos de A en B. Por otro lado, recordamos las construcciones de
cono ['(R) y suspension X(R) de Wagoner para un dlgebra R y mostramos que si R es unital y
A es un algebra arbitraria, los morfismos de algebras A — I'(R) clasifican las extensiones

0> M.,(R)->E—-A—-NO.

Con esto en mano, unificamos los conceptos antes vistos y definimos el grupo Ext(A, R) como
la completacion a grupo del monoide abeliano [A, Z(R)];[h.

En la segunda seccién recordamos los conceptos de teoria de homologia, escision, invari-
anza homotdpica polinomial, estabilidad matricial y cuasi-morfismos. Revemos las propiedades
de la teorfa de homologia universal j : Alg, — kk de Cortifias-Thom y demostramos algunos
lemas técnicos que necesitaremos a lo largo de la tesis.

En la ultima seccion establecemos la notacion basica sobre dlgebras de caminos de Cohn
y Leavitt.

1.1 Homotopy and extensions

Let ¢ be a commutative ring. Let Alg, be the category of associative, not necessarily unital
algebras over £. If B € Alg,, we write ev; : B[t] — B, ev;(f) = f(i), i = 0, 1 for the evaluation
map. Let ¢y, d; : A — B be two algebra homomorphisms; an elementary homotopy from ¢,
to ¢, is an algebra homomorphism H : A — B[] such that evo H = ¢ and ev; H = ¢;. We
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1.1. HOMOTOPY AND EXTENSIONS

say that two algebra homomorphisms ¢, : A — B are homotopic, and write ¢ = ¢, if for
some n > 1 there is a finite sequence ¢ = ¢y,..., ¢, = ¢ such that foreach0 < i < n -1
there is an elementary homotopy from ¢; to ¢;,;. We write

[A, B] = homye, (A, B)/ =
for the set of homotopy classes of homomorphisms A — B.

Lemma 1.1. Let A be a ring. Then the maps 15,1, : A — M)A, 1(a) = €,1®a, ;,(a) = ,®a
are homotopic.

Proof. Let R = A be the unitalization. Consider the element

— £ 3 _
U(r) = [(1 o ((tl - tzf))] e GL, RI1].

Let ad(U(¢)) : M(R[t]) — M,(R[¢]) be the conjugation map. Then H = ad(U(®)), : A —
M,Alz], satisfies evo H = 1, evi H = (). O

Let A and R be algebras, ¢, € homyy,,(A,R) and ¢, : R — M3R, as in Lemma 1.1. We
say that ¢ and y are M,-homotopic, and write ¢ =y, ¥, if 1,¢ = 1. Put

[A, R]p, =homy, (A, R)/ ~u, -

Let C be an algebra, A, B C C subalgebras and incy : A — C, incg : B — C the inclusion
maps. Let x,y € C such that yAx C B and axya’ = aa’ for all a,a’ € A. Then

ad(y,x): A = B, ad(y,x)(a) = yax (1.1)
is a homomorphism of algebras, and we have the following.

Lemma 1.2. Let A, B, C and x,y be as above. Then incg ad(y, x) =y, incs. If moreover A = B
and yA,Ax C A, then ad(y, x) =y, 1d4.

Proof. Consider the diagonal matrices y = diag(y, 1), X = diag(x, 1) € M,C. One checks that
axya’ = aa’ for all a,a’ € M,A. Hence ¢ := ad(y, x) : M,bA — M,C is a homomorphism.
Moreover we have ¢1, = 1, incg ad(y, x) and ¢¢;, = ¢} incy. Thus applying Lemma 1.1 twice,
we get

L incgad(y, x) = (hincy =~ 1y incy .

This proves the first assertion. Under the hypothesis of the second assertion, ¢ maps M,A —
M,A, and we have ¢, = 1, ad(y, x) and @5 = ¢. The proof is immediate from this using
Lemma 1.1. |
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A C,-algebra is a unital algebra R together with a unital algebra homomorphism from the
Cohn algebra C, to R (see [10]). Equivalently, R is a unital algebra together with elements
X1, X2, Y1, Y2 € R satisfying y;x; = 0, ;.

If R is a C,-algebra the map

B:R®&R >R, a®Bb=xay, + xby; (1.2)

is an algebra homomorphism. An infinite C,-algebra is a C,-algebra together with an endo-
morphism ¢ : R — R such that for all a € R we have

a@¢(a) = p(a).

In the following lemma and elsewhere, if M is an abelian monoid, we write M™* for the
group completion.
The main reason of why we are interested in C,-algebras is the following.

Lemma 1.3. Let A be an algebra, R = (R, x1, x2,y1,y2) a Cy-algebra, and B < R an ideal.
Then (1.2) induces an operation in [A, Bly, which makes it into an abelian monoid whose

neutral element is the zero homomorphism. If furthermore R is an infinite C,-algebra, then
[A,R]y, =0

Proof. By Lemma 1.2, the homomorphisms B — B, b — x;by; (i = 0, 1) are M,-homotopic
to the identity. Hence to prove the first assertion, it suffices to show that (1.2) associative
and commutative up to M,-homotopy. This is straightforward from Lemma 1.2, since all
diagrams involved commute up to a map of the form (1.1). The second assertion is clear. O

Example 1.4. Any purely infinite simple unital algebra (see Section 3.1 for a definition of
purely infinite simple algebra) is a Cy-algebra, by [5, Proposition 1.5].

For aset S and an algebra A, we write MgA for the algebra of those matrices M : § XS —
A which are finitely supported. We write My = Ms{ and €,, € My for the matrix whose only
nonzero entry is a 1 at the (s, f)-spot (s, ¢ € §'). We also consider the algebra

I's(R) :={A:S XS = R|#suppA,.,#suppA.; < oo}

of those matrices which have finitely many nonzero coefficients in each row and column. If
#S =n < oo, then 'y = Mg = M, is the usual matrix algebra. We use special notation for the
case S = N; we write M, for My and I for I'yy. Observe that MR is an ideal of I'(R). Put

2(R) =T'(R)/M«R. (1.3)

The algebras I'(R) and X(R) are Wagoner’s cone and suspension algebras [31]. A *-algebra
is an algebra R equipped with an involutive algebra homomorphism R — R°”. For example
{ is a =-algebra with trivial involution. If R is a x-algebra, the conjugate matricial transpose
makes both I's(R) and MR into =-algebras.
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Example 1.5. If R is a unital algebra, its cone I'(R) is an infinite C,-algebra ([31]) and Z(R)
is a Cy-algebra. For every algebra R, T(R) < T'(R) and £(R) < X(R). By definition, we have
an exact sequence

0—-> M.R—>T(R)—> Z(R)— 0. (1.4)

Lemma 1.6. Let R be a unital algebra and let & be an algebra containing MR as an ideal.
Then there exists a unique algebra homomorphism = g : & — I'(R) which restricts to the
identity on M R.

Proof. If a € & then for each i, j € N there is a unique element a;; € R such that (¢;; ®
Da(ejj®1) = € j®a; ;. One checks that y : & — I'(R), ¥(a) = (a; ;) satisfies the requirements
of the lemma. O

It follows from Lemma 1.6 that if R is unital then every exact sequence of algebras
O->MR—-E—-A->O (1.5)

induces a homomorphism ¢ : A — Z(R) and that (1.5) is isomorphic to the pullback along
of (1.4). Hence we may regard [A, X(R)],, as the abelian monoid of homotopy classes of all
sequences (1.5). Put

Ext(A,R) = [A,Z(R)]y,, Ext(A) = Ext(A,{). (1.6)

Observe that, by Lemma 1.3, any sequence (1.5) which is split by an algebra homomorphism
A — & maps to zero in Ext(A, R).

1.2 Homology theories and algebraic bivariant K-theory

Let 7 be a triangulated category and € the inverse suspension functor of 7. A homology
theory with values in 7" is a functor X : Alg, — 7. An extension of algebras is a short exact
sequence of algebra homomorphisms

(E):0 > A>B—>C—-0 (1.7)

which is ¢-linearly split. We write & for the class of all extensions. An excisive homology
theory for {-algebras with values in 7 consists of a functor X : Alg, — 7, together with a
collection {0 : E € &} of maps c?ié = 0g € homs(QX(C), X(A)). The maps dg are to satisfy
the following requirements.

i) For all E € & as above,

X(f) X(g)

QxX(C) %~ x(A) X(B) X(C)

is a distinguished triangle in 7.
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ii) If
(E) : A-l.-p *.¢C

I

E):  ALep

is a map of extensions, then the following diagram commutes

QX(C) 2~ X(A)
QX(?’)l ix(d)
QX(C") 5— X(A)

Observe that if X : Alg, — 7 1is excisive and A, B € Alg,, then the canonical map
X(A) ® X(B) — X(A @ B) is an isomorphism. Let / be a set. We say that a homology theory
X : Alg, — 7 is I-additive if first of all direct sums of cardinality < #/ existin 7~ and second

of all the map
P xap - xcPay
jeJ jeJ
is an isomorphism for any family of algebras {A; : j € J} C Alg, with #J < #I.
We say that the functor X : Alg, — 7 is homotopy invariant if for every A € Alg,, X

maps the inclusion A C A[¢] to an isomorphism.
Let S be aset, s €.5 and let

ty:A—> MgA, (a)=¢€,®a (A € Alg,). (1.8)

Call X Mjs-stable if for every A € Alg,, it maps ¢, : A — MgA to an isomorphism. This
definition is independent of the element s € §, by the argument of [12, Lemma 2.2.4]. One
can further show, using [12, Proposition 2.2.6] and [24, Example 5.2.6] that if S is infinite
and X is Mg-stable, and T is a set such that #7° < #S, then X is Mr-stable.

Definition 1.7. Let A, B € Alg,. A quasi-homomorphism from A to B is a pair of homomor-
phisms ¢, : A — D € Alg,, where D contains B as an ideal, such that

¢(a) —yY(a) € B (aeA).

We use the notation
(p,¥): A — D> B.

Two algebra homomorphisms ¢,y : A — B are said to be orthogonal, in symbols ¢ L ¢,
if oY (y) =0 = yY(x)p(y) (x,y € A). If ¢ L ¢ then ¢ + ¢ is an algebra homomorphism.
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1.2. HOMOLOGY THEORIES AND ALGEBRAIC BIVARIANT K-THEORY

Proposition 1.8. ([17, Proposition 3.3]) Let X : Alg, — 7 be an excisive homology theory
and let (p, ) : A — D > B be a quasi-homomorphism. Then, there is an induced map

X(¢,¥) : X(A) — X(B)

which satisfies the following naturality conditions:

~

. X(¢,0) = X(o).
2. X(¢’ lﬁ) = _X(w’ ¢)

3. If (¢1,41) and (1, Y1) are quasi-homomorphisms A — D>Bwith ¢y L ¢ and ;L Y,
then (¢1 + ¢, ¥y + ¥r2) is a quasi-homomorphism and

X(¢1 + ¢, ¥ + 42) = X(¢1,41) + X(h2, ¢2).

4. X(¢,¢) = 0.

5. Ifa : C — A is an -algebra homomorphism, then
X(pa,ya) = X(¢,Y)X(a).

6. Ifn: D — D’ is an {-algebra homomorphism which maps B into an ideal B’ < D’, then
X(ng,mp) = X(11|5)X(¢, ).

7. Let H=(H",H): A — D[t]> B[t] withevoo H = (¢*,¢") and evio H = W, ¥"). If,
in addition, X is homotopy invariant then

X(¢".¢7) = X" ¥).

8. Let (Y,0) be another quasi-homomorphism A — D > B. Then (¢,0) is a quasi-
homomorphism and

X(¢’ Q) = X(¢’ W) + X(lﬂ,Q)

The excisive homology theories form a category, where a homomorphism between the
theories X : Alg, — 7 and Y : Alg, — U is a triangulated functor G : 7~ — U such that

Alg, X T

BN

u



1.2. HOMOLOGY THEORIES AND ALGEBRAIC BIVARIANT K-THEORY

commutes, and such that for every extension (1.7) in &, the natural isomorphism ¢ : G(QX(C))
— QY(C) makes the following into a commutative diagram

G@Y)
GQX(C)—=YA)

| A

QY (C).

In [15] a functor j : Alg, — kk was defined which is an initial object in the full subcat-
egory of those excisive homology theories which are homotopy invariant and M,-stable. It
was shown in [24] that, for any fixed infinite set S, by a slight variation of the construction
of [15] one obtains an initial object in the full subcategory of those excisive and homotopy
invariant homology theories which are Mg-stable. Starting in the next section we shall fix S
and use j and kk for the universal excisive, homotopy invariant and S -stable homology theory
and its target triangulated category. Moreover, we shall often omit j from our notation, and
say, for example, that an algebra homomorphism is an isomorphism in kk or that a diagram
in Alg, commutes in kk or that a sequence of algebra maps

A—-B—-C

is a triangle in kk to mean that j applied to the corresponding morphism, diagram or se-
quence is an isomorphism, a commutative diagram or a distinguished triangle. Also, since
as explained above, in kk the corner inclusion ¢y : A — MsA is independent of s, we shall
simply write ¢ for j(c,).

The loop functor Q in kk and its inverse have a concrete description as follows. Let
Q; =1t — 1)[1], Q_; = (t — 1)¢[t,7']. For A € Alg, we have

Q' j(A) = j(Q.1 ®A). (1.9)
For A, B € Alg, and n € Z, set
kk,(A, B) = homy(j(A),Q"j(B)),  kk(A, B) = kko(A, B). (1.10)

The groups kk.(A, B) are the bivariant K-theory groups of the pair (A, B). Setting A = €
in (1.10) we recover the homotopy algebraic K-groups of Weibel [32]; there is a natural
isomorphism ([15, Theorem 8.2.1], [24, Theorem 5.2.20])

kk,(¢, By — KH,(B) (B € Alg,). (1.11)

Example 1.9. Let T be an infinite set and j : Alg, — kk the universal homotopy invariant,
excisive and My-stable homology theory. If R € Alg,, then the functor j((-)®R) : Alg, — kk
is again a homotopy invariant, My-stable, excisive homology theory. Hence it gives rise to a
triangulated functor kk — kk. In particular, triangles in kk are preserved by tensor products.
Moreover, the tensor product induces a “cup product”

U : kk(A, B) ® kk(R,S) — kk(A®R,B®S), £Un=(B®n)o(£®R).
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1.2. HOMOLOGY THEORIES AND ALGEBRAIC BIVARIANT K-THEORY

Remark 1.10. Even though KH is I-additive for every set I, the universal functor j : Alg, —
kk is not known to be infinitely additive.

Lemma 1.11. Let {A; : i € I} C Alg, be a family of algebras, A = P
a function and v € T. Then the homomorphism

A,Taset,i: [>T

iel

LA — MrA, Li(Z a;) = Z €i(ivi() ® di
i

i€l
is homotopic to t,.

Proof. Because (M7A)[x] = @i . (M7A;[x]), we may assume that / has a single element, in
which case the lemma follows using a rotational homotopy, as in the proof of Lemma 1.1. O

Lemma 1.12. Let {S; : i € I} be a family of sets, o; : S; — S; an injective map, (o). :
Mg, — My, (0).(€;) = €rys)0i) the induced homomorphism, D = @ie[ Ms,, and o, =
@iel(ai)* :D — D. If X : Alg, = T is M,-invariant, then X(o ) is the identity map.

Proof. The map o; induces an £-module homomorphism ¢5? — 59 whose matrix [o7]
is an element of the ring I's, of Section 1.1. Let [0;]* be the transpose matrix; we have
[o]*[0i] = 1, and (07).(a) = [07]alo] (a € Ms,). Hence for [o] = P, [0l e R =D, Ts,.
we have o.(a) = [o]al[o]*. Since D < R, X(o.) is the identity by [12, Proposition 2.2.6]. O

Proposition 1.13. Let {S; : i € I} be a family of sets, v; € S; and S = Ui;S,;. Let f =
D, v 1 €V = & Ms,. Let T be an infinite set with #T > #S. Let j : Alg, — kk be
the universal excisive, homotopy invariant and My-stable homology theory. Then j(f) is an
isomorphism.

Proof. Put D = P, Ms,. Letinc : D — Ms{") be the inclusion. By Lemma 1.11, the
composite inc f equals the canonical inclusion ¢ in kk. Next let g = (Msf)inc : D —
MgD. We have g(€,p) = €5 ®€,,, (@, € S;). For each i € I extend the coordinate
permutation map S; X {v;} — {v;} X§;, toabijectiono; : § XS; —» S X§;, and let (o). be the
induced automorphism of MgMs, = Mgs,. Consider the automorphism o, = @iel(o-i)* :
MsD — MgD; by Lemmas 1.11 and 1.12, ¢ = j(o.g) = j(g). From what we have just
seen and Example 1.9, in kk the following diagram commutes and its horizontal arrows are
isomorphisms.

00— Mt ML pp Mg D

fl %fi V J/MsMsf

D~ MsD ——— MsMsD
St

It follows that M f and f are isomorphisms in kk. O
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1.3. COHN AND LEAVITT PATH ALGEBRAS

1.3 Cohn and Leavitt path algebras

A directed graph is a quadruple E = (E°, E', r, s) where E° and E' are the sets of vertices
and edges, and r and s are the range and source functions E! — E°. We call E finite if both
E° and E' are finite. A vertex v € E° is a sink if s~'(v) = 0 and is an infinite emitter if s~'(v)
is infinite. A vertex v is singular if it is either a sink or an infinite emitter; we call v regular
if it is not singular. A vertex v € E° is a source if r~'(v) = 0. We write sink(E), inf(E) and
sour(E) for the sets of sinks, infinite emitters, and sources, and sing(E) and reg(E) for those
of singular and of regular vertices.

A finite path p in a graph E is a sequence of edges u = e; ...e, such that r(e;) = s(e;;1)
fori=1,...,n— 1. In this case |u| := n is the length of u. We view the vertices of E as paths
of length 0. Write P(E) for the set of all finite paths in E. The range and source functions r, s
extend to P(E) — E° in the obvious way. An edge f is an exit for a path u = e, ... e, if there
exist i such that s(f) = s(e;) and f # e;. Apathu =e,...e, withn > 1 is a closed path at v
if s(ey) = r(e,) =v. Aclosed pathu = e; ... e, atvisacycle at v if s(e;) # s(e;) fori # j.

The Cohn path algebra C(E) of a graph E is the quotient of the free associative {-algebra
generated by the set E° U E! U {¢* | e € E'}, subject to the relations:

(V) v-w=6,,0.
(E1) s(e)-e=e=e-r(e).
(E2) r(e)-¢" = ¢* =" - s(e).
(CK1) e - f =6, r(e).

The algebra C(E) is in fact a =-algebra; it is equipped with an involution * : C(E) — C(E)°?
which fixes vertices and maps e +— e* (e € Q'). Condition V says that the vertices of E
are orthogonal idempotents in C(E). Hence the subspace generated by E° is a subalgebra of
C(E), isomorphic to the algebra ¢ finitely supported functions E® — ¢. For v € E°, let
X» € €E" be the characteristic function of {v}. We have a monomorphism

¢ (F) 5 CE), o) =v. (1.12)

Observe that if E° is finite, then £E" = ¢£° is the algebra of all functions E® — ¢.
Associate an element m, € C(E) to each v € E? \ inf(E) as follows

Diees-1(v) €€” if v € reg(E)
m, = . .
0 if v € sink(E).

Observe that m, satisfies the following identities:
m, = m,, mf =my, MW = 0,,Mm,, me =0,y (ec EY. (1.13)

9



1.3. COHN AND LEAVITT PATH ALGEBRAS

Let C™(E) be the *-algebra obtained from C(E) by formally adjoining an element m, for each
v € inf(E) subject to the identities (1.13). We have a canonical *-homomorphism

can : C(E) » C"(E). (1.14)
Let P = P(E). Forv € E°, set
P,={uePE)|rw)=v}, P ={ueP|su =y (1.15)

Let I'p be the ring introduced in Section 1.1. Using the notation (1.15) in the summation
indexes, define a *-homomorphism

p:C"(E) - TI'p, (1.16)
PO) = D €nus PO = ) €war (VEE'ccE)
aeP aeP©
pm) = ) o (weinf(E)).
aePv |al>1

Lemma 1.14. The maps (1.14) and (1.16) are monomorphisms.

Proof. It is well-known that the set
By ={af" | a,p € P,r(a) =r(B)}
is a basis of C(FE) ([1, Proposition 1.5.6]). Set
B, ={am,p" | a,B € P,,v € inf(E)}.

It follows from (1.13) that 8 = B, U B, generates C"'(E) as an {-module. It is clear that p is
injective on B; hence it suffices to show that the set p(8) C I'p is ¢-linearly independent. Let
F C Bbe afinite set and ¢ : F — £\ {0} a function such that

Z cx=0.

xeF

Let QO = {(@,B) € P* | r(a) = r(B)}; give Q a partial order by setting (a,8) > (o/,8') if
and only if there exists 8 € P, such that @’ = af, f’ = 6. Let f : B = O, f(af") =
(@,B), f(am,B") = (a,B). Assume that ¥ # (0. Then f(F) has a maximal element (e, S3).
If af* € F, then p(af”) is the only matrix in p(¥ ) whose (a,f) entry is nonzero. Thus
cop- = 0, a contradiction. Hence v = r(@) € inf(E), " ¢ ¥ and am,* € . Then f(F \
{@m,3*}) contains only finitely many elements of the form (e, Be) with e € s~'(v). However
plam,*)qep. = 1 for every e € s~ '(v). Thus Cam,p = 0, which again is a contradiction. Hence
¥ must be empty; this concludes the proof. O
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1.3. COHN AND LEAVITT PATH ALGEBRAS

Remark 1.15. By Lemma 1.14 we may identify C"(E) with its image in U'p. Under this
identification, the formula
m, = Z ee*

ees~(v)
holds for every v € E°.
Set
C"(E)sq,=v-m, (veE°. (1.17)
Consider the following ideals of C"(E)
K(E) = (g, | v € reg(E)) ¢ K(E) = (g, | v € E). (1.18)

For v € E° let g, € C(E) be the element (1.17). The Leavitt path algebra L(E) is the

quotient of C(E) modulo the relation
(CK2) ¢q,=0 (vereg(E)).
In other words, for the ideal K(E) < C(E) of (1.18), we have a short exact sequence
0—K(E)— CE) = L(E)— 0. (1.19)

It follows from [ 1, Proposition 1.5.11] that the sequence (1.19) is £-linearly split, and is thus
an algebra extension in the sense of Section 1.2.
Example 1.16. Let A, be the graph
v N

o2 > o R

° f v Jn-1 Vn )

Then, there is an isomorphism L(A,) = M, (see [1, Section 1.3]).
Example 1.17. Let R, be the graph
'Y N e
</
Then, there is an isomorphism L(R;) = €[x, x"'] (see [1, Section 1.3]).
Example 1.18. Let R, with n > 2 be the graph
e
. .V,?\ ey,
Then, L(R,) = L(1,n) the Leavitt algebra of type (1, n) introduced in [21] (see [1, Section
1.3]).

The adjacency matrix Al, € ZE\"ENXE jg the matrix whose entries are given by
(A} = #le € E' : s(e) = vand r(e) = w).

The reduced adjacency matrix is the matrix Ay € Z™EEXE) which results from Az upon
removing the rows corresponding to sinks. We also consider the matrix

[ e ZEXee®) 5
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Chapter 2

Algebraic bivariant K-theory and Leavitt
path algebras

Resumen del capitulo

En este capitulo trabajaremos con dlgebras de camino de Leavitt sobre un anillo commutativo
L.

La primera seccion estd dedicada a la caracterizacion de la imagen por j : Alg, — kk
del algebras de camino de Cohn C(E) de grafo E. EIl algebra C(E) recibe un morfismo
canénico ¢ : ¢E) — C(E). Probamos, en el Teorema 2.1, que la teorfa de homologfa
escisiva, invariante por homotopia polinomial y E-estable universal j manda al morfismo ¢ a
un isomorfismo.

JE) = J(C(E)). (2.1)

La demostracién usa los cuasi-morfismos mencionados en el capitulo anterior, en el espiritu
de la demostracion de Cuntz de la periodicidad de Bott en K-teoria para C*-algebras. La
demostracion de este hecho estd divida en cuatro subsecciones con tres lemas intercalados.

En la segunda seccion usamos los resultados de la seccion anterior junto con la extension
(1.19) para obtener el tridngulo (8). También mostramos un resultado interesante que se des-
prende del tridngulo (8) (ver Proposicion 2.11) que dice que un morfismo 6 € kk(L(E), L(F))
entre adlgebras de camino de Leavitt unitales induce un isomorfismo en KH; parai = 0,1
entonces es un isomorfismo en kk.

En la Seccion 2.3, bajo minimas hipétesis en ¢, demostramos el teorema de estructura
(Teorema 2.17) que dice que para toda dlgebra de caminos de Leavitt unital existe una tnica
descomposicion

JE) = j(Ly® L & () La)
i=1

donde L, es el dlgebra de Leavitt de tipo (1,n), d;, .. .,d, son los coeficientes de estructura de
KHy(L(E)) y sy r estan relacionados con los rangos de los grupos KHy(I(E)) y KH'(L(E)).

13



2.1. THE COHN PATH ALGEBRA IN KK

Por altimo, relacionamos este resultado con los resultados obtenidos por Ruiz y Tomforde
(ver [29]) para grafos E con finitos vértices e infinitas aristas.

En la dltima seccién introducimos una filtracién descendiente {kk(L(E),R)' : 0 <i <2} en
kk(L(E), R) para toda dlgebra R y toda dlgebra de camino de Leavitt unital L(E) y calculamos
los cocientes kk(L(E), R)' /kk(L(E), R)™*' (Teorema 2.21). Con esto en mano, demostramos:

1) Existe una sucesion exacta corta (Teorema de coeficientes universales)

[KHo,y"KH\]

0 — ExtL{(KHo(L(E)), KH,.(R)) — kk,(L(E),R) = -
Hom(K Hy(L(E)), KH,(R)) ® Hom(Ker(I — AL), KH,;1(R)) — 0.

2) Existe una sucesion exacta corta (Férmula de Kiinneth)

0 — KH'(L(E)) ® KH,.1(R) ® Ker(I — Ag) ® KH,(R) — kk(L(E), R)
— Tory(KH'(L(E)), KH,(R)) — O.

2.1 The Cohn path algebra in kk

We shall say that a homology theory is E-stable if it is stable with respect to a set of cardi-
nality #(E° U E' UN).
Recall (see equation 1.12) that we have a monomorphism

g (7 = CE), () =v.
The main result of this section is the following theorem.

Theorem 2.1. Let ¢ be the algebra homomorphism (1.12) and let j : Alg, — kk be the
universal excisive, homotopy invariant and E-stable homology theory. Then j(y) is an iso-
morphism.

Corollary 2.2. Let E and F be graphs and j : Alg, — kk the universal excisive, homotopy
invariant and E LI F-stable homology theory. Assume that KHy(€) = Z. Then C(E) and C(F)
are isomorphic in kk if and only if #E° = #F°.

Proof. By Theorem 2.1, C(E) and C(F) are isomorphic in kk if and only if £" and £
are. If #E° = #F° then " and £F") are isomorphic in Alg,, and therefore also in kk.

Assume conversely that £E” and ") are isomorphic in kk. Then in view of (1.11) and of the
hypothesis that KH(¢) = Z, we have #E° = #F°. O

The proof of Theorem 2.1 is organized in four parts, with three lemmas interspersed.
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2.1. THE COHN PATH ALGEBRA IN KK

2.1.1 Proof of Theorem 2.1, part I
Recall from Section 1.3 that we have elements ¢, € C"(E) and ideals of C"'(E)
K(E) = (g, | v € reg(E)) € K(E) = (g, | v € E”). (2.2)
One checks, using [1, Proposition 1.5.11] that the maps
Mp, > K(E), €up aqf’ (veE")

assemble to an isomorphism

@ Mp, — K(E). (2.3)
veE?
Observe that (2.3) restricts to an isomorphism
B My, — x(E). (2.4)
vereg(E)

Leti: ¢E) > K (E) be the homomorphism that sends the canonical basis element y, to g,
and let ¢ : C(E) — C™(E) be the *-homomorphism determined by

-f(V) =m,, f(e) = eMy(e)-

One checks that (can, &) is a quasi-homomorphism C(E) — C"(E) > (E). From the equality
cang = &p + ¢ and items (1), (3), (4) and (5) of Proposition 1.8, it follows that

J(can, &) j(p) = jlcan g, &p) = j(Ep +1,Ep) = jEp,&p) + j(1,0) = j(.

By Proposition 1.13, 7 is an isomorphism in kk. Hence

j(i)_lj(can’ J(p) = lj([(EO))-
It remains to show that
J@)j@ " j(can, &) = 1e). (2.5)

Let P = P(E); consider the algebra My of finite matrices indexed by #. Let ¢ : K (E) —
MpC(E) be the homomorphism that sends ag,* to €, ® v, where €, is the matrix unit. We
shall need a twisted version i, of I; this is the *-homomorphism

i : C(E) » MpC(E), (v)=¢€,, (€)=¢€uw®e (eEecE). (26)

We have a commutative diagram

EY L L R(E) (2.7)
ok
C(E) —= MpC(E)

15



2.1. THE COHN PATH ALGEBRA IN KK

Lemma 2.3. Let @ € P and let 1, : C(E) - MpC(E) as in (1.8). Then t, and the map i, of
(2.6) induce the same isomorphism in kk.

Proof. Because j is E-stable, it is Mp-stable, whence ¢, is an isomorphism and does not
depend on a. Hence we may and do assume that @ = w € E°. Because j is homotopy
invariant, it is enough to find a polynomial homotopy between ¢,, and ;. For each v € E°\{w}
set

A, =[(1 = ey + (£ =206, + 16, + (1 — )6, ] @V,
B, =[(1 = )&y, + 2t — )€y, — te,, + (1 = D)€, ] ®V, A, = €,,, @ W = B,,.
The desired homotopy is the homomorphism H : C(E) — MpC(E)[t] defined by
H(V) = Av(Ev,v ® V)BW H(e) = As(e)(es(e),r(e) ® e)Br(e)7 H(e*) = Ar(e)(er(e),s(e) ® e*)Bs(e)-

2.1.2 Proof of Theorem 2.1, part II
Let
MpC(E) D U = spanfe, s @ af” | s(a) = r(y), s(B) = r(0), r(a) = r(B)}.

One checks that 2 is a subalgebra containing the images of both 7, and ¢. From the commu-
tative diagram 2.7 we obtain, by corestriction, another commutative diagram

CE' — L R(E) (2.8)
)
C(E) A

By Lemma 2.3, the bottom arrow of (2.8) is a monomorphism in kk. We shall abuse notation
and write i, for the latter map.

Let 5’"(E) be the unitalization; put R = Fpgm(E). Consider the homomorphism p’ =
p®1 : C(E) - R. One checks that the subalgebra 2 C R is closed under both left and
right multiplication by elements in the image of p’. We can thus form the semi-direct product
C™(E) < A = C"(E) <, A As an £-module, C"(E) =< U is just C"(E) © A. Multiplication is
defined by the rule

(r,x) - (s,y) = (rs,p"(r)x + yp'(s) + xy).
Let J be the ideal in C™(E) < U generated by the elements (aq,5", —€,5 ® v) with v = r(a) =
r(8). One checks that

J = span{(aq,B", —€,5®V) : v =r(a) = r(B)}.

Set
D = (C"(E)=<W)/J.
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2.1. THE COHN PATH ALGEBRA IN KK

Lemma 2.4. The composite of the inclusion and projection maps A = 0<A c C"(E)<A — D
is injective.

Proof. It follows from (2.3) that there is an injective homomorphism
P KE) - U, (aqf) =ep®v (@) =rp)=v).
Letinc : ‘IA((E ) — C™(E) be the inclusion. Observe that J is the image of the map inc >(—j) :

K(E) - C"(E) = U. In particular, the projection 7 : C"(E) x A — C™(E) is injective on J.
It follows that J N (0 = A) = 0O; this finishes the proof. O

2.1.3 Proof of Theorem 2.1, part I1I

By Lemma 2.4, we may regard U as an ideal of D. Let T : C"(E) — D be the composite
of the inclusion C"(E) c C™(E) = U and the projection C"(E) = A — D. We may embed
diagram (2.8) into a commutative diagram

(E) L R(E) —~ C(E) (2.9)
Ll
C(E) ——=9 D

Let o = Ycan, ¥, = Y& Note that y; L I, S0 Y12 = ¥ + i, 1s an algebra homomor-
phism. We have quasi-homomorphisms

Wo, Y1), Wo, ¥172), Wip2, 1) - C(E) —» D>

Lemma 2.5. The quasi-homorphism (Y, Y1 ,2) induces the zero map in kk.
Proof. Let H" : C(E) — D[t] be the algebra homorphism determined by setting

H+(V) = (V, O), H+(e) = (emr(e)a 0) + (1 - IZ)(O, Es(e),r(e) ® €) + t(O, Ge,r(e) ® }"(6))
H+(€*) = (mr(e)e*’ O) + (1 - tZ)(O’ €r(e),s(e) ® 6) + (2t - 13)(0, €r(e)e ® I"(E))
forv € E® and e € E'. It is a matter of calculation to show that H* a homotopy between

Yo and ¥ 2, and that (H",y1,) : C(E) — D[] > U] is a homotopy between (¥, ¥1/2) and
(12, ¥1,2). Hence by item (7) of Proposition 1.8, we obtain

JWo,¥12) = jW12,¥12) =0

as wanted. O
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2.2. ATRIANGLE FOR L(E)

2.1.4 Proof of Theorem 2.1, conclusion

Using the commutativity of diagram (2.9) and items (6), (8) and (1) of Proposition 1.8 and
Lemma 2.5 we have

J@)j(can, &) = j(o, Y1) = jWo,¥12) + jW12,¥1) = j(io).
On the other hand
J(@)j(can, &) = () j(@)j@) " j(can, &).
Hence
@) = j(@) j@) i@~ j(1,8)
Since j(i;) is a monomorphism, this implies that

Licary = @) i@~ j(1,&).

This finishes the proof. O

2.2 A triangle for L(F)

Recall that we have an ¢-linearly split short exact sequence 1.19

0—- K(E)—> C(E)—> L(E) - 0.
and is thus an algebra extension in the sense of Section 1.2.

Proposition 2.6. Let j : Alg, — kk be as in Theorem 2.1.
i) There is a distinguished triangle in kk

£(reg(E)) U g(EO) L(E). (2.10)

ii) Let &, : € — €"2ED e the inclusion in the v-summand and let ¢, € ZE™ be the v-column
of the matrix I — AL (v € reg(E)). Under the isomorphism (1.11), the composite f j(x,)
corresponds to the map )

(
1®c, : KHy(t) - KHy() @ Z\F"

Proof. Consider the map g : ¢"¢E) — K(E) q(x,) = g,. In view of (2.4), j(g) is an
isomorphism by Proposition 1.13. By Theorem 2.1, the map j(¢) is an isomorphism. Hence
the kk-triangle induced by (1.19) is isomorphic to the triangle (2.10) where for the inclusion
inc : K(E) c C(E), we have f = j(¢)"! j(inc) j(g). This proves i). To prove ii), fix v € reg(E)
and consider the elements g,,m, and ee* € C(E) (e € E', s(e) = v). As the latter elements
are idempotent, we regard them as homomorphisms ¢ — C(E). In particular, ¢, = inc gy,.
Because ¢, L m, and v = ¢, + m,, j(q,) = j(v) — j(m,). On the other hand, by (CKI),
Jm,) = By J(r(€)). Summing up., g, = j(v) = 5o, J(r(e)): this proves ii). 0
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2.2. ATRIANGLE FOR L(E)

Theorem 2.7. Let X : Alg, — T be an excisive, homotopy invariant, E-stable and E°-
additive homology theory and let R € Alg,. Then (2.10) induces a triangle in T

I-A?
X(R)eeE) L. X(R)E") — ~ X(L(E)®R) .

Proof. Tensoring the triangle (2.10) by R yields another triangle in kk, by Example 1.9. By
the universal property of j, applying X to the latter triangle gives a distinguished triangle in 7.
Now apply Proposition 2.6(ii) and the E°-additivity hypothesis on X to finish the proof. O

Example 2.8. Theorem 2.7 applies to X = KH and arbitrary E, generalizing [4, Theorem
8.4] from the row-finite to the general case. Recall a ring A is K,-regular if for every m > 1,
the inclusion A — Alty,...,t,] induces an isomorphism K,(A) — K,(Alty,...,t,]). We
call A K-regular if it is K,-regular for all n. By [32, Proposition 1.5], the canonical map
K(A) — KH(A) is a weak equivalence when A is K-regular. For example, when { = Z and
R is any regular supercoherent ring, then L(E) ® R is K-regular (by the argument of [4, page
23]), so we may replace KH by K to obtain the following triangle in the homotopy category
of spectra which generalizes [4, Theorem 7.6]

I-A!
K(R)(reg(E)) _E K(R)(EO) — K(L(E)®R) .

In particular this applies when R = € is a field. When E° is finite and € is arbitrary, Theorem
2.7 also applies to the universal homology theory j : Alg, — kk of Theorem 2.1. In particular,
if #E° < 0o we have a triangle in kk

A
pee®) e B (), @2.11)

In particular L(E) belongs to the bootstrap category of [15, Section 8.3] whenever E° is finite,
or equivalently, when L(E) is unital [1, Lemma 1.2.12].

Remark 2.9. When E is finite, we can also fit L(E) into a kk-triangle associated to a matrix
with entries in {0, 1}. Let B}, € {0, 1 J(E" Usink(E)X(E'Usink(E)

6r(x),s(y) X,y € E‘1
(B,E)x,y = 6r(x),y X € El,y € sink(FE)
0 x € sink(E)

The matrix By, = A%, is the incidence matrix of the maximal out-split graph E’ of [1, Defini-
tion 6.3.23]. Since by [1, Proposition 6.3.25], L(E) = L(E’) in Alg,, (2.11) gives a triangle

fEl =By €E1|_Isink(E) L(E)

Here I, B, € (E' U sink(E)) x E' are obtained from the identity matrix and from (B},)" by
removing the columns corresponding to sinks.
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2.2. ATRIANGLE FOR L(E)

Remark 2.10. In [15], a functor j : Alg, — kk’ was constructed that is universal among
those homotopy invariant and M.-stable homology theories which are excisive with respect
to all, not just the linearly split short exact sequences of algebras (1.7). The suspension
functor in kk' is induced by Wagoner’s suspension (1.3); we have Q™' j = jX. The universal
property of j implies that there is a triangulated functor F : kk — kk’ such that j’ = F j, and it
follows from [15, Theorem 8.2.1] that F : KH,(R) = kk,({,R) — kk, (£, R) is an isomorphism
foralln € Z and R € Alg,. Note that when E° is finite and E' is countable, Theorem 2.7
applies to X = j'. It follows that F,, : kk(L(E),R) — kk,(L(E), R) is an isomorphism for all
n € Z and R € Alg,. In particular, if R is unital, E' is countable and E° is finite, then for the
Ext-group we have a natural map

Ext(L(E), R) — kk_(L(E), R).

Convention 2.12. From now on, every statement about the image under j of the Cohn or
Leavitt path algebras of finitely many graphs E, ..., E, will refer to the U_, E;-stable, ho-
motopy invariant, excisive homology theory j : Alg, — kk.

One easy application of Theorem 2.7 is the following proposition:

Proposition 2.11. Let E and F be graphs and 0 € kk(L(E), L(F)). Assume that E° and F° are
finite and that KH;(0) is an isomorphism fori = 0, 1. Then 6 is an isomorphism. In particular
KH,(0) is an isomorphism for all n € Z.

Proof. The map 6 induces a natural transformation 6, : kk(A, L(E)) — kk(A,L(F)) (A €
Alg,). Our hypothesis that KH;(0) is an isomorphism for i = 0,1 says that g-i;,) is an
isomorphism. Since F? is finite by assumption, this implies that also Oo-ijier and g jgreatry
are isomorphisms. Hence applying 6 : kk(—, L(E)) — kk(—, L(F)) to the triangle

preg(F) i o L(F)

and using the five lemma, we obtain that 6 is an isomorphism. In particular there is an
element y € kk(L(F'), L(E)) such that uf = 1,(). Our hypothesis implies that K H;(1) must be
an isomorphism for i = 0, 1. Hence reversing the role of E and F in the previous argument
shows that i has a left inverse. It follows that 6 is an isomorphism. O

Remark 2.12. The conclusion of Proposition 2.11 does not follow if we only assume that
there are group isomorphisms 6; : KH;(L(E)) — KH(L(F)) (i = 0,1). For example, over
t =Q, Ko(Ly) = Ko(Ly) = Z and K,(Ly) = Q" = Z/2Z & Z™ = K,(L,). However they are
not isomorphic in kk, since they have different periodic cyclic homology: HP(Ly) = 0 and
HP(Ly) = Q.
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2.3. A STRUCTURE THEOREM FOR LEAVITT PATH ALGEBRAS IN KK

2.3 A structure theorem for Leavitt path algebras in kk

Standing assumptions 2.13. From here on, we shall assume that the commutative base ring
¢ satisfies the following conditions.

i) KH_(¢) = 0.
ii) The natural map Z = Ko(Z) = KHy(Z) — KHy({) is an isomorphism.

Moreover, all graphs considered henceforth are assumed to have finitely many vertices. In
particular, all Leavitt path algebras will be unital.

Remark 2.13. Any regular supercoherent ground ring € satisfies standing assumption i), and
moreover any Leavitt path algebra over € is K-regular. Hence all statements of this section
are valid for regular supercoherent € satisfying standing assumption ii), with K, substituted
for KHy. In particular, this applies when £ = Z or any field.

Definition 2.14. Let L(E) the Leavitt path algebra associated to the graph E. Put
KH'(L(E)) = kk_{(L(E), {).

It follows from (2.11) and the standing assumptions that, abusing notation, and writing I for
I,
KH'(I(E)) = Coker(I — A : ZE' — 75, (2.14)

Proposition 2.15. (Compare [16, Theorem 5.3].) Let E be a graph with finitely many ver-
tices, such that E' is countable and sour(E) = (0. Then the natural map of Remark 2.10 is a
surjection

Ext(L(E)) » KH'(L(E)). (2.15)

Proof. Our hypothesis on E imply that, with the notation of (1.15), we have #P, = #N for all
v € E°. Hence by (2.4), K(E) = M. £ and (1.19) is an extension of L(E) by M, £"&®),
Let ¢ : L(E) — X(£)#® be its classifying map and for v € reg(E) let mr, : Z(£)*¢E) — X(£)
be the projection, and put ¥, = m,iy. With the notation of Remark 2.10 we have a triangle in
kk'

. . v, e .

JE) = JUE) — JEOF) - jEO).
Applying kk'(—, Z({)) to it and using Remark 2.10 we see that KH'(L(E)) is generated by the
kk-classes of the y,; since these are in the image of (2.15), it follows that the latter map is
surjective. O

Lemma 2.16.
i) The groups KH'(L(E)) and KHy(L(E)) have isomorphic torsion subgroups.
i) #sing(E) = tk(KHo(L(E)) — tk(KH'(L(E)).
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2.3. A STRUCTURE THEOREM FOR LEAVITT PATH ALGEBRAS IN KK

Proof. Let D = diag(d,, ...,d,,0,...,0) € ZE™=¢®E 4. > 2 d\d;,, be the Smith normal
form of I — A%.. Then D' is the Smith normal form of / — A, whence

tors KHy(L(E)) = @ Z/d; = tors KH'(L(E)). (2.16)

i=1
Similarly,

tk KHy(L(E)) — tk KH'(L(E)) =#E° — k(I — Ag)) — (#reg(E) — k(I — Ag)))
=#sing(E).

We shall write
T(E) = tors KHy(L(E)).

For 0 < n < oo, let R, be the graph with exactly one vertex and n loops and let L, = L(R,).
Thus Ly = ¢, L; = £[t,t'] is the algebra of Laurent polynomials and for 2 < n < oo, L, =
L(1,n) is the Leavitt algebra of [21]. By (2.11), j(L») = j(Ly) and we have a distinguished
triangle in kk

05 0 — jL)  n=1), 2.17)

Theorem 2.17. Let E be a graph with finitely many vertices. Assume that € satisfies the
standing assumptions 2.13. Let d,, . ..,d,, d;\d;+| be the invariant factors of the finite abelian
group 7(E), s = #sing(E) and r = tk(KH'(L(E))). Let j : Alg, — kk be the universal
excisive, homotopy invariant, E-stable homology theory. Then

JIE) = j(Ly® L & () Ly,
i=1

Proof. Let D = diag(dy,...,d,,0,...,0) € ZE>eE) Then there are P € GLyp Z, Q €
GL41eg(r) Z such that P(I — AL)Q = D where D := diag(d,, . ..,d,,0,...,0). Hence we have
the following commutative square in kk with vertical isomorphisms

j(greg(E)) I_A%; j(on)

.

JeeE By —— (eE)

Hence both rows have isomorphic cones. By (2.11), the cone of the top row is L(E); by (2.17)
and Lemma 2.16 that of the bottom row is L3 & L} & €D_| Ly |

Corollary 2.18. The following are equivalent for graphs E and F with finitely many vertices.
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2.4. A CANONICAL FILTRATION IN KK(L(E),R)

i) JUAE)) = j(L(F)).
i) KHy(I(E)) = KHy(L(F)) and KH'(L(E)) = KH'(L(F)).
iii) KHy(L(E)) = KHy(L(F)) and #sing(E) = #sing(F).

Proof. Immediate from Lemma 2.16 and Theorem 2.17. |

Remark 2.19. Let E and F be as in Corollary 2.18. Assume in addition that € is a field,
that L(E) and L(F) are simple and that inf(E) # 0 # inf(F). In [29, Theorem 7.4], E.
Ruiz and M. Tomforde show that under these assumptions condition iii) of Corollary 2.18 is
equivalent to the existence of a Morita equivalence between L(E) and L(F). It follows that for
such E and F, the algebras L(E) and L(F) are isomorphic in kk if and only if they are Morita
equivalent. Ruiz and Tomforde show also that under the additional assumption that the group
of invertible elements U({) has no free quotients, the condition that # sing(E) = #sing(F) in
iii) can be replaced by the condition that K\(L(E)) = K(L(F)). The additional assumption
guarantees that tk(K,(L(E))) = rk(Ker(1 — A%)) = tk(KH'(L(E)) whenever #E° < oo, so that
#sing(E) = 1k(Ko(L(E)) — tk(K;(L(E))).

2.4 A canonical filtration in kk(L(E),R)

Let ¢ be a ground ring satisfying the Standing assumptions 2.13, let E be a graph with finitely
many vertices, L(E) its Leavitt path algebra over ¢, and n € Z. It follows from (2.10) that we
have an exact sequence

0 - KH,(¢) ® KHy(L(E)) — KH,(L(E)) — Ker((I - AL) ® KH,_1(£)) — 0. (2.18)

Lemma 2.20. The map KH,({) ® KHy(L(E)) — KH,(L(E)) of (2.18) is the cup product
map of Example 1.9.

Proof. Because by assumption 2.13 (i1), KHy({) = Z, for any finite set X, the cup product of
Example 1.9 gives an isomorphism

U : KH,(6) ® KHy(£X) — KH,(£Y). (2.19)

Hence by (2.10) we have a commutative diagram with exact rows

t

KH, (e®) — KH (65 KH,(L(E))

J A U

KH,(0) ® KHy(l™*®) —~ KH,({) ® KHo(lE')y — KH,(£) ® KHy(L(E)).
A
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2.4. A CANONICAL FILTRATION IN KK(L(E),R)

Let R be an algebra and n € Z. Consider the map
KH, : kk(L(E),R) - Homz(KH,(L(E)), KH,(R)). (2.20)
Define a descending filtration {kk(L(E),R)' | 0 < i < 2} on kk(L(E), R) as follows. Let

kk(L(E),R)° = kk(L(E),R), kk(L(E),R)" = KerK H,, (2.21)
kk(L(E), R)* = (KerKH,) N kk(L(E),R)". (2.22)

It follows from the definition of kk(L(E), R)? and kk(L(E), R)' that KH, induces a canonical
homomorphism

kk(L(E), R)° /kk(L(E), R)" — hom(KHo(L(E)), K Hy(R)). (2.23)

Let & € kk(L(E), R)"; by Lemma 2.20, KH, (&) vanishes on the image of KH,(£)£", whence
it induces a map Ker(/ — A7) — KH,(R). Thus we have a map

kk(L(E), R)" /kk(L(E), R)* — hom(Ker(I — AL), KH,(R)). (2.24)

Let & € kk(L(E), R)*; embed ¢ into a distinguished triangle

C: — L(E) -5 R. (2.25)
We have an extension of abelian groups
(&) 00— KH((R) = Ky(C¢) = KHy(L(E)) — 0. (2.26)

Let
kk(L(E), R)* — ExtL(KHy(L(E)), KH|(R)), ¢ [E(&)]. (2.27)

Theorem 2.21. Let E be a graph with finitely many vertices, { a ring satisfying the Standing
assumptions 2.13, L(E) the Leavitt path algebra over € and R an (-algebra. Then the maps
(2.23), (2.24) and (2.27) are isomorphisms.

Proof. Observe that if B is an algebra and X a finite set, then the isomorphism (1.11) induces
an isomorphism kk,(¢X, B) — hom(ZX, KH,(B)). Using this and applying kk(—, R) to the
triangle (2.11) we obtain an exact sequence
Hom(Z"’, KH,(R)) — Hom(Z"*®), KH,(R))) — kk(L(E), R)
— Hom(ZE', KHy(R)) — Hom(Z"¢®), KH,y(R)). (2.28)

Since
0 — Ker(I — AY) — 7" — 7E° 5 KHy(L(E)) — 0 (2.29)

is a free Z-module resolution, the kernel of the last map in (2.28) is
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Hom(KHy(L(E)), KHy(R)), and it is straightforward to check that the induced surjection
kk(L(E),R) -» Hom(KHy(L(E)), KHy(R))
is precisely the map KH, of (2.20). Hence the cokernel of the first map in (2.28) is
kk(L(E),R)', and again because (2.29) is a free resolution, we have a short exact sequence
0 — ExtL(KHy(L(E), KH\(R)) — kk(L(E),R)" —
Hom(Ker(I — AL), KH{(R)) — 0. (2.30)

It is again straightforward to check that the surjective map from kk(L(E),R)' in (2.30) is
(2.24). Hence by (2.30) we have an isomorphism

kk(L(E), R)> — ExtL(KHy(L(E), KH,(R)) (2.31)

It remains to show that the above isomorphism agrees with (2.27).

Let & € kk(L(E),R)* and let 8 : j(L(E)) — Q7'j(£)¢E) be the boundary map in (2.11).
Because KHy(¢) = 0, there is an element & € kk,(£°2®), R) such that & = £3. Hence because
kk is triangulated, there exists 6 € kk(CE', C¢) such that we have a map of distinguished
triangles

JO)yEB — s J(OE — J(L(E)) —= QL j(£)ee®

o lf

Qj(R) Ce JI(E)) —— J(R)

Applying the functor kk(¢, —) and using that KH;(¢) = 0, we obtain a map of extensions

0

Ker(I — AL) — Z&) ZE Ko(L(E)) —=0 (2.32)

.

0 K1 (R) — Ko(C¢) — Ko(L(E)) —=0

By definition, (2.31) maps ¢ to the class [£] of & modulo the image of Hom(ZZ', KH,(R)). It
is clear from (2.32) that [£] = [C]. O

Corollary 2.22. Let £ € kk(L(E),R) and let C; be as in (2.25). Then & = 0 if and only if
KHy(¢) = KH (¢) = 0 and the extension (2.26) is split.

In the next corollary we shall use the fact that, since Ker(/ — A%) is a free abelian group,
the canonical surjection KH;(L(E)) — Ker(/ — A%,) admits a section

v : Ker(I — A}) —» KH,(I(E)). (2.33)

The map y induces a natural transformation

y" : Hom(KH,(L(E)), —) — Hom(Ker(/ — A%), -)).
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Corollary 2.23. (UCT) For every n € Z we have an exact sequence
. [KHo.y"KH)]
0 — Ext;(KH\(L(E)), KH,,1(R)) = kk,(L(E),R) —
Hom(KHy(L(E)), KH,(R)) ® Hom(Ker(I — A%), KH,,1(R)) — 0.

Proof. In view of (1.9) we may assume that n = 0. By Theorem 2.21 the map KH, :
kk(L(E),R) — hom(KHy(L(E)), KHy(R)) is a surjection; by definition, its kernel is kk(L(E), R)',
and y* K H, induces the map (2.24), which is surjective by Theorem 2.21. Hence [KHy, y*KH,]
is surjective, and its kernel is by definition kk(L(E), R)?>, which, again by Theorem 2.21, is
Ext,(KHy(I(E)), KH\(R)). O

Lemma 2.24. Let E be a graph and R an algebra. Assume that #E° < co. Then the compo-
sition map induces an isomorphism

KH'(L(E)) ® KH,(R) — kk(L(E),R)"

Proof. By our Standing assumptions, KH_¢ = 0; it follows from this that

KH'(I(E)) = kk_;(L(E), £)" and that the composition map lands in kk(L(E),R)". In par-
ticular, writing ¥ for the dual group, we have KH'(L(E))/kk_,(L(E), {)*> = Ker(I —AL)Y; since
the latter is free, tensoring with KH,(R) we obtain the top exact sequence of the commutative
diagram below; the bottow row is exact by Theorem 2.21.

ExtL(t(E),Z) ® KH,(R)—— KH'(LE) ® KH,(R) Ker(I — A%)" ® KH,(R)

| | |

ExtL(r(E), KH,(R)) kk(L(E),R)' Homz (Ker(I — AL), KH;(R)).

One checks, using the fact that for a free, finitely generated group L, L ® (—) = Homz(L, —),
that the vertical arrows on the right and left are isomorphisms; it follows that the vertical
arrow at the middle is an isomorphism as well. O

Lemma 2.25. Let E and R be as in Lemma 2.24. There is an exact sequence
Ker(I — Ag) ® KHy(R) — Hom(KHy(L(E)), KHy(R)) - Tory,(KH'(L(E)), KHy(R)).
Proof. Tt follows from (2.11) that we have a free Z-module resolution
0 — Ker(I — Ap) = (ZF')" — (Z¢®)" - KH'(L(E)) — 0.
Now tensor by KH(R) and observe that

Ker((I — Ag) ® idgp,r) = hom(KHy(L(E)), KHy(R)).
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Proposition 2.26. (Kiinneth theorem) Let L(E) and R be as in Theorem 2.21 and n € Z. Then
there is an exact sequence

0 — KH'(I(E)) ® KH,,,1(R) ® Ker(I — Ap) ® KH,(R) — kk(L(E), R)
— Tory(KH'(I(E)), KH,(R)) — 0.
Proof. 1t suffices to prove the proposition for n = 0. By Theorem 2.21 we have a canoni-
cal surjection 7 : kk(L(E),R) — Hom(KH,(L(E)), KHy(R)). By Lemma 2.25 we have an

inclusion
inc : Ker(/ — Ag) ® KHy(R) € Hom(KHy(L(E)), KHy(R)). (2.34)

Let Q = n'(Ker(I — Ar) ® KH((R)); by Lemmas 2.24 and 2.25 we have exact sequences

0 — Q — kk(L(E),R) — Tory(KH'(L(E)), KHy(R)) — 0
0> KH'(L(E))® KH{(R) > Q — Ker(I - Ag) ® KHy(R) — 0. (2.35)

We have to show that the second sequence above splits. Let 6 : Ker(I — Ag) - KH(L(E))
be a section of the canonical projection. One checks that for inc as in (2.34), the composite

¢ Ker(I — Ap) ® KHo(R) 225 KHO(L(E)) ® KHy(R) — kk(L(E), R)
satisfies 76’ = inc. It follows that the sequence (2.35) splits, completing the proof. O

Remark 2.27. The key property of the algebra B = L(E) that we have used in this section is
that for some m,n € N and M € Z"™" we have a distinguished triangle in kk

JO" 5 j@" > j(B).

All the results and proofs in this section apply to any algebra B with the above property,
substituting M for I — A%, and assuming of course that { satisfies the Standing assumptions
2.13. However one can show, using the Smith normal form of M, that any such B is kk-

isomorphic to the sum of Leavitt path algebra and a number of copies of the suspension
Q_1(0).
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Chapter 3

Homotopy classification of unital purely
infinite simple Leavitt path algebras

Resumen del capitulo

En el capitulo 3 trabajamos con dlgebras de caminos de Leavitt simples de grafos finitos sobre
un cuerpo £.

En la Seccion 3.1 recordamos los resultados de Ara, Goodearl and Pardo sobre la K-teoria
de 4lgebras simples puramente infinitas. También probamos (Corolario 3.10) que si R es K;-
regular, simple puramente infinita y unital, entonces K;(R) es isomorfo al grupo mo(U(R)) de
componentes conexas polinomiales del grupo de elementos inversibles de R.

En la Seccién 3.2 probamos que para toda dlgebra de caminos de Leavitt simple de grafo
finito y para toda dlgebra unital simple puramente infinita y K;-regular R el morfismo de

monoides
J - [L(E), Ry, \ {0} — kk(L(E), R)

es un isomorfismo.
En la tercera Seccion demostramos el Teorema principal de esta tesis, que es el siguiente:

Theorem 3.1. Sean E y F grafos finitos y € un cuerpo. Supongamos que L(E) y L(F) son
simples puramente infinitas. Sea & : Ko(L(E)) — Ko(L(F)) un isomorfismo de grupos. En-
tonces

o Existen morfismos de dlgebras no nulos ¢ : L(E) < L(F) : ¥ tales que Ky(¢) = &,
KoW) = €7, v ~u, iduey y 90 ~u, idiir).

o Si ademds £([11k)]) = [lur)] entonces ¢ y ¥ pueden ser tomados como morfismos
unitales tales que Yy¢ ~ idyg) y ¢y = idyp).

Este resultado se sigue facilmente de todos los resultados obtenidos en esta tesis hasta el
momento.
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3.1. PURELY INFINITE ALGEBRAS AND K-THEORY

En la Seccién 3.4 probamos que si R es un dlgebra unital de division o un 4lgebra
unital simple puramente infinita K,-regular entonces existe un isomorfismo Ext(L(E), R) =
kk_1(L(E), R) para toda dlgebra de caminos de Leavitt simple de grafo finito.

En la Seccién 3.5 probamos que para toda dlgebra de caminos de Leavitt simple de grafo
finito y toda algebra unital, simple puramente infinita y regular supercoherente, cualquier par
de morfismos L(E) — L, y cualquier par de morfismos L(E) — L, ® R son M,-homotbpicos
y, mas atn, si los morfismos son unitales entonces son homotépicos.

3.1 Purely infinite algebras and K-theory

Let R be a ring; write Idem(R) for the set of idempotent elements. Let p,q € Idem(R). We
write p ~ ¢ if p and g are Murray-von Neumann equivalent [5]; that is, if there exist elements
x € pRgq and y € gRp such that xy = p and yx = g. We call such pair (x,y) an MvN
equivalence from p to g and write (x,y) : p ~ q.

Put Idem,(R) = Idem(M,(R)), 1 < n < co. If R is unital, we write

V,.(R) = Idem,(R)/ ~ (1<n<o), V(R)=Idem.(R)/ ~.

Remark 3.2. One may also define V(R) as the set of isomorphism classes of finitely gen-
erated projective right modules. The equivalence between the two definitions follows from
[27, Theorem 1.2.3] and [8, Propositions 4.2.5 and 4.3.1]. One checks thatif f : R — S isa
homomorphism and f(1) = p, then under the identification, the map V(R) — V(S) induced
by MR — MS corresponds to the scalar extension functor QgpS .

If p,q € Idem(R) and pg = gp = 0 we say that p and g are orthogonal and write p L g
to indicate this. An idempotent p in a ring R is infinite if there exist orthogonal idempotents
q,r € Rsuchthatp =g+ r, p ~qgand r # 0. Aring R is said to be purely infinite simple if
for every nonzero element x € R there exist s, ¢ € R such that sxt is an infinite idempotent. If
R is unital this is equivalent to asking that R not be a division ring and that for every x € R
there are a, b € R such that axb = 1.

The graphs E such that L(E) is purely infinite simple are completely characterized by
[1, Theorem 3.1.10]. We wish to express this result using the notion of cofinality; we recall
the definition from [1, Definitions 2.9.4]. Let Xg be the set whose elements are the infinite
paths of E and also the finite paths which end at a singular vertex of E. The graph E is called
cofinal if for every vertex v € E° and every y € Xj there exists a path from v to some vertex
winvy.

Theorem 3.3. [1, Lemma 2.9.6 and Theorem 3.1.10] L(E) is purely infinite simple if and
only if E is cofinal, has at least one cycle and every cycle of E has an exit.

The following theorem describing K, and K; of purely infinite simple unital rings is due
to Ara, Goodearl and Pardo. If R is a unital ring, write U(R) for the group of invertible
elements of R.
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Theorem 3.4. [5, Corollary 2.3 and Theorem 2.4] If R is a purely infinite simple unital ring,
then
Ko(R) = V(R)\{[0]}

Ki(R) = UR)™.

Proposition 3.5. Let R be a purely infinite simple unital ring. Then the map ¢ : V{(R) —
V(R) is an isomorphism. Moreover, for every n > 1 and every element (qi,...,q,) €
Idemy,(R)" there exists (py,...,p,) € Ildem (R)", such that p; ~ q; in Idemy(R) and such
that p; L pjfori# j.

Proof. This is straightforward from [5, Proposition 1.5 and Lemma 1.1] |
Combining Proposition 3.5 and Theorem 3.4 we obtain the following.

Corollary 3.6. Let R be a purely infinite simple unital ring. Then
Ko(R) = Vi(R\{[0]}.

Corollary 3.7. Let R be a purely infinite simple unital ring and let e, f € R be nonzero
idempotents. Then the following are equivalent

(1) e~ f.
(2) le]l = [f]in Ko(R).

If furthermore e, f € Idem;(R)\{0, 1} then the above conditions are also equivalent to the
following.

(3) There exists u € U(R) such that f = ueu™".
(4) There exists a commutator u € [U(R), U(R)] such that f = ueu™".

Proof. The equivalence of (1) and (2) follows from Corollary 3.6. By [8, Proposition 4.2.5],
(3) is equivalent to having simultaneously e ~ fand 1 —e ~ 1 — f. Hence to prove that (1)
implies (3) it only remains to show that 1 —e ~ 1 — f. But

le] +[1 —e]l =[1]=[fT+[1 - f]

in Ko(R) and [e] = [f], implies [1 — e] = [1 — f] in Ky(R) and therefore in V(R). Hence
1 —e ~1— f. Next we show that (3) implies (4). Because R is simple and f # 1, 1 — f is
a full idempotent. Hence (1 — f)L(E)(1 — f) is purely infinite simple (by [5, Corollary 1.7])
and the inclusion induces an isomorphism K;((1 — f)R(1 — f)) — Ki(R). By Theorem 3.4,
this implies that the induced map U((1 — f)R(1 — f))* — U(R)* is an isomorphism. Since
the latter map sends [£] — [€ + f], there is an element w € U((1 — f)R(1 — f)) such that
[w+ f]=[u""]. Then (w+ fHu € [UR), UR)] and (w + fHueu ' (w™" + f) = f. To prove that
(4) implies (1) take x = eu”' f and y = fue; we have xy = e and yx = f. |
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Let G : Alg, — ®rp be a functor from algebras to groups and let A € Alg,. The connected
component of G(A) is the subgroup

G(A) > G(A) = {g | Qu() € G(Al1])  u(0) = 1,u(1) = g}.
Observe that G(A)° is a normal subgroup. We write
mG(A) = G(A)/G(A).
The Karoubi-Villamayor K;-group ([20]) is
KVi(A) = mo(GL(A)).

Observe that every elementary matrix is in GL(A)". It follows that we have a surjective

homomorphism
Ki(A) » KV(A). (3.1)

By [32, Proposition 1.5], the map (3.1) is an isomorphism whenever A is K;-regular.

Lemma 3.8. Let R be a unital ring.
i) If p € Idem(R) and u € U(pRp)°, then u+ 1 — p € U(R)".

ii) Let xi,..., X0, Y1,...,Yn € R such that yixjy; = 6 jyi, XiyjXi = 0;jXi. Set p; = Xiyi, ¢i = YiXi,
P= @?:1 PiR, 0 = @?:] qiR. Then the map

¢y 1= Endp(P) = @D piRp; — €] qjRq: = Endw(0),
ij i,j

a — diag(yy, ..., y,adiag(xy,..., x,)
is an isomorphism which sends U(Endg(P))? isomorphically onto U(Endg(Q))°.
Proof. Straightforward. O

Proposition 3.9. Let R be a unital purely infinite simple ring. Then the canonical map
mo(U(R)) — mo(GL(R)) = KV(R) is an isomorphism.

Proof. We know from Theorem 3.4 and (3.1) that U(R) — KV;(R) is surjective. The kernel
of this map is U(R) N GL(R)"; it is clear that it contains U(R)°. We have to show that

U(R) N GL(R)’ c UR)°. (3.2)

We claim that the argument of the proof that [GL(R), GL(R)] N U(R) C [U(R),U(R)] in
[5, Theorem 2.3] can be adapted to prove (3.2). The proof in loc.cit. has two parts. The first
part shows that if 0 # p € Idem(R) and u € [GL(R), GL(R)] N U(R) satisfies

u=p+(1-ppul-p) (3.3)
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then u € [U(R), U(R)]. Using the same argument and taking Lemma 3.8 into account, one
shows that if (3.3) is in GL(R)?, then it must be in U(R)°. In the second part of the proof of
[5, Theorem 2.3] it is observed that for adequately chosen idempotents e and f € T = eRe and
elements xy,yy,..., X, Y, € R, the assignment a — diag(yy,...,y,)adiag(xy,..., x,) induces
an isomorphism between R and the subring

Mn(T) OS5 = {(ai,j) ‘A, € Tf, a,; € fT forall1 <i< I’l}

Let & C U(R) be the image under the isomorphism U(S) — U(R) of the subgroup generated
by the set of those elementary matrices 1 + ae; ; i # j which are elements of S. The authors
then proceed, using the argument of the proof of [22, Theorem 2.2], to show that any u € U(R)
is congruent modulo & to one of the form of (3.3). In view of Lemma 3.8 and of the fact that
elementary matrices above are in U(S)°, this shows that any u € U(R) is congruent modulo
U(R)" to one of the form (3.3). This finishes the proof. O

Corollary 3.10. If R is unital, purely infinite simple and K,-regular then K,(R) = mo(U(R)).

Let A be an algebra. Identify Homa, (€, A) = Idem;(A) via the bijection ¢ > ¢(1). We
say that two idempotents p, g € Idem;(A) are homotopic, and write p = g, if the correspond-
ing homomorphisms £ — A are homotopic.

Lemma 3.11. Let A be an algebra and p € Idem,(A). Then p = 0 if and only if p = 0. If A
is unital, then p =~ 1 if and only if p = 1.

Proof. The if part of both assertions is clear. One checks that if x € {0,1} and p(7) €
Idem; (A[z]) satisfies p(0) = x, then p = x. The only if part of both assertions follows
from this. |

3.2 kk-maps as homotopy maps

The main goal of this section is to prove the following theorem.

Theorem 3.12. Let E be a finite graph such that L(E) is simple and R a purely infinite simple
unital algebra. Assume that R is K,-regular. Then the canonical map

[L(E), Ry, \ {0} = kk(L(E), R)

is an isomorphism of groups.

3.2.1 Non-purely infinite case

Let E be a finite graph such that L(E) is simple. If L(E) is not purely infinite, then it follows
from [1, Lemma 2.9.5] and source elimination [1, Definition 6.3.26] that L(E) = M, for
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3.2. KK-MAPS AS HOMOTOPY MAPS

some 1 < n < oco. Hence, it is sufficient to show that j : [M,, R]y, \ {0} — kk(M,,R) is an
isomorphism.

Recall (see 1.1) that a C,-algebra is a unital algebra R together with a unital homomor-
phism from the Cohn algebra C, to R. Thus a C,-algebra is a unital algebra together with
elements xi, x2,y1,y2 € R such that y;x; = 6; ;. For example, if R is a purely infinite simple
unital algebra then R is a C,-algebra (see [5, Proposition 1.5]). Put

B:R®R — R, a®Bb = xjay, + x;by,. (3.4)

Lemma 3.13. Let R, and R, be C;y-algebras and let A, < Ry and A, < R, ideals. Let
B : A;®A; — A, be the sum operation (3.4). Then the maps

=25] ®idA2,idAl ®H, : A] ®A2 @Al ®A2 - A] ®A2
are M,-homotopic.

Proof. Straightforward from Lemma 1.2. O

Let C be an algebra, A, B C C subalgebras and x,y € C satisfying xAy C B and ayxa’ =
aa’ (a,a’ € A); then the following map is an algebra homomorphism

ad(x,y) : A = B, ad(x,y)(a) = xay. (3.5)
If C is unital and y = x7!, then ad(x, y) = ad(x) is the usual conjugation map.

Lemma 3.14. Let A and R be algebras, with A finitely generated. Then:

i) The canonical map
[A, MR] — [A, MRy,

is bijective.
ii) If furthermore R is a C,-algebra then the canonical map
[A, Ry, = [A, MR,
is an isomorphism of monoids.

Proof.

1) Because A is finitely generated,

[A, M R] = colim[A, M»R] = colim[A, M»R]y, = [A, MRy, .
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ii) Because R is an C;-algebra, the map [A, R]y, — [A, MR]y, is @ monoid homomorphism
by Lemma 3.13. We have to prove that it is bijective. Observe that M,R is again a C,-
algebra. Hence in view of the proof of part 1), it suffices to show that [A, R]y, — [A, MaR]y,
is bijective. Letx = €, ® x; + €2 Q@ x; andy = €, ®y; + 61 ® y,. By Lemma 1.2, the
following diagram is M,-homotopy commutative

MR 22 1y (R)

Nk

M>R.
It follows that the map of ii) is surjective. Injectivity follows similarly. O

Lemma 3.15. Let ¢, : A — R be algebra homomorphisms with R unital. Assume that there

aren > 1 and u € GL,(R) such that ad(u)t,¢ = 1,\y. Then there are elements x,y € R such

that ad(x,y)¢ = . If moreover A, ¢ and W are unital, then we may choose x invertible and
-1

y=x.

Proof. Put v = u~'. It follows from the identity ad(u),,¢ = ¢ that for every a € A,

up(ayvy = Ya) and u;1¢(a) = ¢la)u;; = 0if i # 1. Hence x = u;; andy = vy
satisfy ad(x, y)¢ = ¢ and if ¢ and ¢ are unital, then xy = yx = 1. |

Proposition 3.16. Let R be a unital, purely infinite simple, Ky-regular algebra and n > 1.
Then the natural monoid maps

(M, Rlp, = [My, MR\ {0} — kk(M,, R) = kk({, R) = Ko(R)

are bijective. Moreover, for nonzero algebra homomorphisms M, — MR as well as for
unital algebra homomorphisms M, — R, being homotopic is the same as being conjugate.

Proof. Because as explained above, any purely infinite simple unital algebra is a C,-algebra,
the map [M,,, R]y, — [M,, M R] is an isomorphism of monoids by Lemma 3.14. Since (¢,)" :
kk(M,,R) — kk(€,R) = KyR is an isomorphism, to prove that the map [M,,, M. R] \ {0} N
kk(M,, R) is surjective, it suffices, by Corollary 3.6, to show that the image of its composite
with ¢; contains the class of every nonzero idempotent in R. Let p € Idem; R \ {0}; by
Proposition 3.5 we may choose ¢ € Idem; R, g ~ p, and an embedding 6 : M,, — R sending
€11 — ¢. Hence the map of the proposition is surjective. If two homomorphisms ¢,y €
Hompyg,(M,, M R) induce the same Ky-element then they are conjugate by the argument of
the proof of [19, Lemma 15.23(b)], and therefore homotopic by Lemma 3.14 and Lemma 1.2 .
From what we have just proved and Lemma 3.15, it follows that if two unital homomorphisms
M,, — R are homotopic then they are conjugate. This finishes the proof. i

Remark 3.17. Since K,-regularity implies K, -regularity [30], Proposition 3.16 implies
Theorem 3.12 in the case when L(E) is simple and not pure infinite.
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3.2.2 Lifting K-theory maps to algebra maps:K,

Recall that a vertex v € E° is singular if it is either a sink or an infinite emitter, and that
it is regular otherwise. We write reg(E), sink(E), sour(E) and inf(E) for the sets of regular
vertices, sinks, sources, and infinite emitters, and put sing(E) = sink(E) U inf(E).

Let R and S be unital algebras and & : Ko(R) — Ky(S). We call & unital if £&([1g]) = [15].

Theorem 3.18. Let E be a graph, R a purely infinite simple unital algebra, and & : Ko(L(E))
— Ko(R) a group homomorphism. Sett : R = M (R), u(a) = € ®a.

i) If E is countable, then there exists a nonzero algebra homomorphism ¥ : L(E) — MR
such that Ko(¥) = Ko(L)é.

ii) If E is finite, then there exists a nonzero algebra homomorphism  : L(E) — R such that
Ko(y) =&

iii) If E° is finite, E' countable and & unital, then there is a unital homomorphism ¢ : L(E) —
R such that Ky(¢) = &.

Proof. Assume first that E is countable and row-finite. By Theorem 3.4 there are orthogonal
idempotents {p, : e € E'} U {p, : v € sing(E)} C Idem.(R) \ {0} such that [p,] = £[v] and
[pe] = élee*] in Ko(R) (v € sink(E), e € E'). If e € E' and r(e) € reg(E) then

pl=0 >, »pyl

JeE s(fH=r(e)

Hence for oy = ) et (=) Pr there are elements x,,y. € M(R) implementing an MvN
equivalence p, ~ o,. Similarly if e € E' and r(e) = v € sink(E), then there is an MVN
equivalence (x,,y.) : p. ~ p, wWith x.,y, € M R. One checks that the prescriptions

W(e) = X, (e =y, (e€E'), $(v)=p, (vesink(E)

define a nonzero algebra homomorphism ¢ : L(E) - M R. Lett : M( M, —» M M.,
7(x ® y) = y ® x; one checks that T ® Idg induces the identity of Ky(M.R). By construction
Ko(¥) agrees with Ky(t @ 1)Ky(1)é = Ky(¢)€ on the classes of those vertices which are sinks
and on those of elements of the form ee* (e € E'). Since the latter generate Ko(L(E)) (by
[1, Theorem 3.2.5]), we have Ky(¥) = Ky(t)€.

For general countable E, let E; be a desingularization and f : L(E) — L(Es) the canonical
homomorphism [2, Section 5]; then Ky(f) is an isomorphism. Hence by what we have just
proved, there exists an algebra homomorphism " : L(Es) — M(R) such that Ky(¥/') =
Ko()EK(f)™!. Then ¢ = /' f satisfies Ko(y) = Ko(t)é. This proves i). Next assume that
E' is countable, that E is finite and that &([1.)] = [1]. Let ¢ : L(E) —» M«(R) be a
homomorphism such that Ky(t)é = Ko(). Set p = ¥(1); then Yy(L(E)) C pM(R)p and there
is an MvN equivalence (x,y) : p ~ €. It follows that there is a unique unital homomorphism
¢ : L(E) — R such that «¢ = ad(y, x)¥. By Lemma 1.2, ¢ satisfies the requirements of iii).
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Finally assume that E is finite. By Corollary 3.6 and Proposition 3.5 there are orthogonal
idempotents {p, : e € E'} U {p, : v € sink(E)} C Idem,(R) \ {0} such that [p,] = &[v] and
[p.] = &lee’] (v € sink(E), e € E'). If e € E' and r(e) ¢ sink(E) then by Corollary 3.6, for
o, as in the proof of Theorem 3.18 there are elements x, € p,Ro, and y, € o.Rp, such that
Pe = X.y. and o, = y,x,. Similarly, if e € E' and r(e) = v € sink(E), then there are x, € p.Rp,
and y, € p,Rp, such that y,x, = p, and x,y. = p.. One checks that the prescriptions

Y(e) = X, (e) =y, (e €E"), ¢(v)=p, (vesink(E))
define a nonzero algebra homomorphism ¢ : L(E) — R such that Ky(¥) = €. i

Corollary 3.19. Let R be a unital purely infinite algebra and E a graph such that L(E) is
simple.

i) If E is countable, then L(E) embeds as a subalgebra of M R.

ii) If E' is countable, E° is finite and [1g] = 0 in Ky(R), then L(E) embeds as a unital subal-
gebra of R.

iii) If E is finite then L(E) embeds as a subalgebra of R.
Proof. Apply Theorem 3.18 to the trivial homomorphism & = 0. O

Remark 3.20. It follows from Corollary 3.19 that any purely infinite algebra R such that
[1z] = O contains L, as a unital subalgebra. Hence by |9, Theorem 4.1], if E is countable
(resp. finite), then L(E) embeds as a subalgebra (resp. a unital subalgebra) of R, indepen-
dently of whether L(E) is simple or not.

Corollary 3.21. Let E be a countable graph with finite E°. Assume that Ko(L(E)) is finite
and letd,,...,d,, d\di be its invariant factors. Let j : Alg, — kk be the canonical functor
([15]). Then there is an algebra homomorphism  : L(E) — M(x,(G}?:1 Lg+1) such that
Jj) is an isomorphism in kk. If moreover L(E) is purely infinite simple then there is an
algebra homomorphism ¢ : _| Lys1 = MwL(E) such that ™' j(¢) and ' j() are inverse
isomorphisms in kk. If E is finite then the same holds with L(E) substituted for M.,(L(E)).

Proof. Assume that E is countable with finite E°. By part ii) of Theorem 3.18, for each
1 <i < n, there is a homomorphism ¢; : L(E) — MLy such that Ky(y;) is the projection
from Ky(L(E)) = @3:1 Z/d,; onto the copy of Z/d;. The map

b
U= W) LE) = Mo(@D Lawn)
i=1

then induces an isomorphism in K. In view of Lemma 2.20 and of the fact that, since
Ko(L(E)) is finite, Ker(/ — Al,) = 0, this implies that K;(y) is an isomorphism too. Hence
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J(¥) is an isomorphism by Proposition 2.11. Assume furthermore that L(E) is purely infinite
simple. Consider the graph
F = Uyled,-H-

Then L(F) = @jzl Ly;,,. The homomorphism ¢ of the corollary is obtained by applying
Theorem 3.18 to & = Ko(Y) ™'t : Ko(L(F)) — Ko(L(E)). This proves the first assertion of the
corollary; the second, for finite E, is proved similarly, using part iii) of Theorem 3.18. |

Let E be a finite graph; if X ¢ L(E), write span(X) for the subspace generated by X. In
the following proposition and elsewhere we consider the following “diagonal” subalgebra of
L(E)

DL(E) = span(sink(E) U {ee” : e € E'}) c L(E).

Proposition 3.22 below will be needed in the next section.

Proposition 3.22. Let E and R be as in part iii) of Theorem 3.18. Assume that L(E) is simple
and let ¢, : L(E) — R be nonzero algebra homomorphisms such that Ko(¢) = Ko(¥). Then
there exists an algebra homomorphism ' : IL(E) — R such that j() = j') in kk and

wl/DL(E) = dpL(E)-

Proof. First assume that ¢(1) = (1) = p. For each e € E' and each v € sink(E) choose
MvN equivalences (x,,y.) : ¢(ee”) ~ y(ee®) and (x,,y,) : ¢(v) ~ Y(v). Define x = 3 ,cpi X, +
Zvesink(E) Xy and y = ZeeE‘ Ye + Zvesink(E)yv- Then X,y € pRp and Ay = p = yx Hence
Yt L(E) — R, ¥'(a) = xy(a)y satisfies ¥, ) = dpre). Moreover j(y) = j(') by Lemma
1.2. Next assume that ¢(1) # (1) and that none of them is equal to 1. Then by Corollary
3.7, there is an element u € U(R) such that u¢(1)u~' = y(1). Hence we can replace ¢ by
a — wy(a)u~' and we are in the above case. Finally, if ¢(1) # (1) and one of them, say
Y(1),1s 1, we can replace ¢ by a unital homomorphism by Theorem 3.18 and we are again in
the first case. O

3.2.3 Lifting K-theory maps to algebra maps: K, and K;

Let E be a finite graph; below we will give a right inverse of the surjective map
0 : K\(L(E)) - Ker(I — A%). (3.6)

Observe that the analogue of the map (3.6) in the C*-algebra setting is an isomorphism; an
explicit formula for its inverse was given by Rgrdam in [25, page 33] in the case when E is
regular. We shall show that in the purely algebraic case considered here, the same formula
gives a right inverse of (3.6), even for singular E.

Let I — B}, be as in Remark 2.9. Let

I (EMUsink(E) = | Xse=vXe Vv ETEE(E)
SRR ’S(XV)_{ Xv v € sink(E)
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By [4, formula 4.1], we have a commutative diagram

_pt
ZE! [-Bj 7' Lsink(E)

K

Zreg(E ) ZE 0
1 —A’E

In particular, s* maps Ker(/ — A%,) — Ker(/ — B},). Furthermore it is an isomorphism by the
dual of [4, Lemma 4.3]. Let x = (x,) € Ker(/ — A,) € Z"¢), Sety = s*(x) € Ker(I — BY).
Let

S={. Ny #0,1<j<lyl} (3.7)

Consider the diagonal matrix V = V(x) € Mg (L(E)),

e if Ve > 0
Vienien =\ it ye <0

Letp =1-VV", g =1-V*V. Observe that p,qg € Mg(DL(E)). Moreover, for A =
E' Usink(E), DL(E) = ¢* and we may regard p = (p,) and g = (q,) as A-tuples of diagonal
matrices in Mg whose entries are in {0, 1}. One checks, using that y € Ker(/ — B}), that
for each @ € A, p, and g, have the same number of nonzero coefficients. Hence we may
choose for each @ a matrix W,, € p,Mjsq, with coefficients in {0, 1} such that W,W! = p, and
W! W, = q,. Further, we may even require that

Wear.p =1 = (Pdeinei = @digprp = 1- (3.8)

We shall use (3.8) in the proof of Lemma 3.24 below. Let W = W(x) € Ms(DL(E)) be the
matrix corresponding to (W,); then

WW* =1-VV*, WW=1-VVand WV =VW=0. (3.9)

Put
Ux) = V(x)+ W(x). (3.10)

It follows from (3.9) that U(x)U(x)* = U(x)*U(x) = 1.

Proposition 3.23. Let x € Ker(I - A%), [U(x)] € K (L(E)) the class of the element (3.10) and
0 : Ki\(L(E)) — Ker(I — AY) as in (3.6). Then d(U(x)) = —x.

Proof. We keep the notation of the paragraph preceding the proposition. Let C(E) be the
Cohn path algebra; consider the subalgebra

DC(E) = span({g, : v € reg(E)} U sink(E) U {ee” : e € E'Y c C(E).
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Consider the diagonal matrix V defined by the same prescription as V but regarded now as
an element of Mg(C(E)). Let W € Mg(DC(E)) be the image of W under the map induced by
the obvious inclusion DL(E) c DC(E); put U = V + W. Consider the matrix

20-0U00 0UU -1
= O € Mg 5 (C(E)).

"=l i-vo
By [12, Section 2.4] (see also [26, Definition 9.1.3]), & is invertible and
(U = [hlsh™'] - [15].

Here 15 is the § X § identity matrix, located in the upper left corner.
One checks that U = UU*U, and that

U = [1 - U ()01~ [1 - 00 € Kol (D) Lg,) =27 (3.11)

vereg(E)

One checks, using (3.11) and the fact that x € Ker(/ — A%), that

AU = -1 xg.l.

veEo
This finishes the proof. O

In principle, the assignment Ker(/ — A}) — K,(L(E)), [x] = [U(x)] is just a set theoretic
map. A group homomorphism with similar properties is obtained as follows. Choose a basis
B = {x;} of the free abelian group Ker(/ — A%); let

Y =7e : Ker(I - Ay) - Ki(L(E), y() nix) = Y nlU(x)] (3.12)

1

Let E be a finite graph such that L(E) is purely infinite simple. Then sink(E) = 0, by
[1, Theorem 3.1.10 (iii) and (iii’)]. Let ¢ : L(E) — R be a unital algebra homomorphism
with R purely infinite simple. Set

Ry ={x €R : ¢(ee’)x = xp(ee”), forallee E'}. (3.13)

Note that
Ry = @ecprpee”)Re(ee”).
Because L(E) is simple, ¢(e) # 0 (a € E'), whence each of the inclusions ¢(aa*)Ré(aa™) C

R induces an isomorphism in K;. Hence the direct sum R, C R® of those inclusions induces
an isomorphism

Ki(Ry) = () Ki(¢(ee")Rp(ee”)) — Ki(R)". (3.14)

ecE!
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Let ¢ : Ki(Ry) — K;i(R) be the map induced by the inclusion R, C R. Consider the bilinear
map

()1 ZF XK \(Ry) = Ki(R), (x,3) = ) xa(y). (3.15)

1

Observe that (-, -) is a perfect pairing; indeed the adjoint homomorphism K;(Ry) — K (R)E'
is the isomorphism (3.14).

Lemma 3.24. (c¢f.[25, Lemma 3.5].) Let E be a finite graph such that L(E) is purely infinite
simple, R a purely infinite simple unital algebra, and ¢ and  : L(E) — R unital homomor-
phisms. Assume that ¢ and  agree on DL(E). Let

U= Z W(@)p(@*) € Ry = Ry,
acE!
Then
K (W) (y(x)) = (x, [ul) + Ki(¢)(y(x)) for all x € Ker(I — A%). (3.16)

Proof. Observe that y(e)p(e*) € U(dp(e)Rp(e*)) (e € E'), whence u € U (Ry). Let {y. : e € I}
be the canonical basis of Z'. One checks that

Wes [ul) = Ye)p(e”) + 1 — p(ee”). (3.17)

To prove the lemma, we may assume that x is an element of the basis B of Ker(/ — A7)
used in (3.12) to define v . Then taking (3.17) into account and adopting the notations and
conventions used in the definition of U(x), one computes that the right hand side of equation
(3.16) is

D velwe)de) + 1 - glee)] + [BUM@N - Y. yelpleyie’) + 1 - dlee)).  (3.18)

Ye>0 Ye<0

Let S be as in (3.7). Consider the diagonal matrices P, Q € Mg L(E) with diagonal entries as
follows

yle)p(e) + 1 — ¢g(ee”) if y. >0

Peeje = | ify, <0

Ot o = 1 ify, >0

DT\ plee) + 1= gleer) ify. <0
Observe that (3.18) is [Po(U(x))Q]. Hence it suffices to show that K;(W)(U(x)) =
[Po(U(x))Q]; we shall show that in fact y(U(x)) = Pp(U(x))Q. Recall that U(x) = V(x) +
W(x). It is immediate from the definition of V(x) that y/(V(x)) = P#(V(x))Q. Hence since W
has coeflicients in DL(E), it only remains to show that ¢(W(x)) = Pé(W(x))Q. A tedious but

straightforward calculation, using (3.8) shows that

dW(X) )i r.jy = POW(X)0) D) e,iry(1.)) Y(e,i),(f,)) €S, acA.

This completes the proof. O
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Remark 3.25. Recall that if L(E) is unital, we have an exact sequence
0 — Ko(L(E)) ® K (£) = K (L(E)) — Ker(I — A%) — 0.

It follows from Lemma 2.20 that if R € Alg, is K,-regular and ¢ € kk(L(E), R), then K,(§)
restricts to the composite of Ko(¢) ® id with the cup product Ko(R) ® K;(£) — K (R).

Theorem 3.26. Let E be a finite graph and S an algebra. Assume that L(E) is simple and
that S is unital, purely infinite simple and K,-regular. Let &, : Ko(I(E)) — Ko(S) and
& Ker(I — AY) — Ki(S) be group homomorphisms. Then there exists a nonzero algebra
homomorphism ¢ : L(E) — S such that Ky(¢) = &y and such that K,(¢)y = &;. If moreover
&y is unital then we can choose ¢ to be a unital homomorphism L(E) — S.

Proof. By Theorem 3.18, there exists a nonzero algebra homomorphism ¢, : L(E) — S such
that Ky(¢g) = &y, and if & is unital then we may choose ¢y unital. If L(E) is not purely
infinite, then by Remark 3.17, L(E) = M, for some 1 < n < co. Hence Ker(/ — A%) = 0 and
K (L(E)) = Ko(L(E))®U(¢). Assume that L(E) is purely infinite simple. Let R = ¢o(1)S ¢o(1)
and let ¢y : L(E) — R be the corestriction of ¢, and inc : R — S the inclusion. Since
Ker(/—A'%) is a direct summand of Z"¢® and (-, -) is a perfect pairing, there exists 6 € K;(Rj,)
such that
(—.0) = Ky(inc)"'&; — Ki(do)y-

Because Ry, is a direct sum of purely infinite simple algebras, by Theorem 3.4 there exists
g € U(Rj,) such that [g] = 6. Define ¢ : L(E) — R by setting ¢zo = (o)iz0, dle) = gdo(e),
d(e*) = go(e*)g™!. Observe that ¢ and ¢, agree on DL(E); in particular, ¢ is unital. Hence by
Lemma 3.24, we have

Ki(d)y = Ki(@o)y + (-, [ul).

But it follows from the formula defining « in Lemma 3.24 and the definition of ¢ that u = g.
Hence

Ki(@)y = Ki(inc)™'¢.

Set ¢ = inc @; then K, (¢)y = &,. Further, Ko(¢) = Ko(¢y) = & because ¢ and ¢, agree on E°.
It is clear by construction that if ¢, is unital homomorphism, then ¢ is also unital. O

3.2.4 Lifting kk-maps to algebra maps
Let ¢, : A — B be algebra homomorphisms. Put

Coy =(a. f) € A® B[t] : f(0) = ¢(a), f(1) = y(a)}.

Letn: Cyy — A, n(a, f) = a; we have an algebra extension
QB — C,y — A. (3.19)
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Lemma 3.27. Let j : Alg, — kk be the canonical functor. The sequence (3.19) induces the
following distinguished triangle in kk

HP)—=jW) .

J(B).

. . j(7)
JQB) —— j(Cyy)

J(A)

Proof. By definition of Cy 4, we have a map of extensions

QB Cpy——> A (3.20)
»
QB Bl VB g B

Let A : B— B® B, A(b) = (b,b). One checks that the kk-triangle associated to the bottom
row of (3.20) is isomorphic to

[id,—id]

° . B jBe " Yp

J(QB)

Let € : j(A) — j(B) be the boundary map in the triangle induced by (3.19). It follows from
(3.20) that there is a commutative diagram

3

J(A) j(B)
l(j(@,j(l//))
j(B) ® j(B) - J(B).
Hence ¢ = j(¢) — j). 0

Let R be a unital, purely infinite simple algebra, let E be a finite graph such that L(E) is
simple and let ¢,y : L(E) — R be nonzero algebra homomorphisms which agree on DL(E).
Let R, be asin (3.13). Put p = ¢(1) and let

B = pRp.
By corestriction, we may consider ¢ and ¢ as homomorphisms L(E) — B. Let
C={feBlr]l|(Jaec LE) ¢ = f0), ¥ = f(1)}
Since L(E) is simple, the map
Coy — C, (a,f)- f

is an isomorphism. We shall identify C = C,,. Assume that R is K;-regular. Then B is
K -regular also, whence Ky(QQB) = KV(B) = K;(B). Hence the extension (3.19) induces an
exact sequence

a/

Ki(B) L~ Ko(C) — "> Ko(L(E)) ™2~ Ko(B) (3.21)

The following two lemmas adapt [25, Lemmas 3.2 and 3.3] to the purely algebraic case.
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Lemma 3.28. Let u be as in Lemma 3.24, 0" as in (3.21) and {-,-) as in (3.15). Let o €
Ko(O)F', o, = [(e€*)]. Then for every x € ZE' we have

(x, [ul) = < - Ap)x, o)

Proof. Let u, = ug(ee*) + 1 — ¢(ee*) (e € E'). By Whitehead’s lemma there is U,(f) €
GL(B[1]) such that U,(0) = 1 and U,(1) = diag(u,,u,"). Set V.(t) = U,.(t)diag(é(e),0),
W,(t) = diag(¢(e*), 0)U,.(1)"!. Now proceed as in the proof of [25, Lemma 3.2], substituting
U.(t)™" and W,(¢) for U,(¢)* and V,(¢)*. o

Lemma 3.29. Let A1 : Ry — Ry, A(a) = Y .cp de)ad(e”). If j(@) = j(¥) € kk(L(E), B) then
there is v € U(Ry) such that [u] = [v'A(v)] € K1(Ry).

Proof. The proof is the same as that of [25, Lemma 3.3]. O

Let S be an algebra, E a finite graph, and ¢,y : L(E) — S algebra homomorphisms. We
say that ¢ and ¢ are 1-step ad-homotopic if either

a) there is an MvN equivalence (u, u”) : ¥(1) ~ ¢(1) such that ad(u, u")p = ¢,

or

b) ¢ and ¢ agree on DL(E) and for B = ¢(1)S¢(1) there is U(r) € U(By[t]) such that
U(0) = 1 and ¢;,1(e) = U()(e), y(e*) = gi(eHU(1)™".

We say that ¢ and ¢ are n-step ad-homotopic if there is a sequence of algebra homomorphisms
¢;: L(E) —» S,1 <i<n,suchthat ¢ = ¢, ¢, = ¢, and ¢; and ¢,,, are 1-step ad-homotopic
for 1 <i < n— 1. Two unital homomorphisms ¢ and ¢ are n-step unitally ad-homotopic if
they are n-ad-homotopic and the ¢; can be chosen to be unital for all 1 < i < n. Call ¢ and ¥
(unitally) ad-homotopic if they are n-step (unitally) ad-homotopic for some n.

Remark 3.30. Observe that if in a) above ¢ and  are unital, then u € U(S), so that ¢ and
are conjugate in the usual, unital sense. Note also that in the situation b) above, ¢ and y are
homotopic. It follows that a unital homomorphism ¢ : L(E) — L(E) is unitally ad-homotopic
to the identity if and only if it is homotopic to ad(u) for some u € U(L(E)).

Theorem 3.31. Let E be a finite graph and R a unital algebra. Assume that L(E) and R are
purely infinite simple and that R is K,-regular. Then the canonical map

J i [L(E), Rlym, \ {0} — kk(L(E),R) (3.22)

is an isomorphism of groups. In particular, [L(E),R]y, \ {0} is the group completion of
[L(E), R]p,. Moreover, we have the following:

i) If ¢ € kk(L(E), R), then there is a nonzero algebra homomorphism ¢ : L(E) — R such that
Jj(@) = €. Moreover, ¢ may be chosen to be unital if € is.
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ii) Two nonzero (unital) algebra homomorphisms ¢, : L(E) — R satisfy j(¢) = j¥) if and
only if they are M,-homotopic if and only if they are (unitally) ad-homotopic if and only if
they are 3-step (unitally) ad-homotopic.

Proof. The map [L(E), R]y, — kk(L(E),R) is a monoid homomorphism by the same argu-
ment as in Proposition 3.16.

Let ¢ € kk(L(E),R) and let y : Ker({ — A%.) — K,(L(E)) be as in (3.12). By Theorem
3.26 there exists a nonzero algebra homomorphism ¢ : L(E) — R such that Ky(¢) = Ko(¥)
and K (&)y = K,()y. Let B = ¢(1)Ry(1), inc : B — R the inclusion and ¢ : L(E) —
B the corestriction of . Then j(inc) is an isomorphism, and for n = j(inc)"'¢ we have
n— jb) € kk(L(E), B)* = Exty(Ko(L(E)), K\(B)), by Theorem 2.21. To prove that the map
of the theorem is surjective, it suffices to show that there exists u € U(Ry) such that for
¢ : L(E) — B, ¢(e) = up(e), gp(e*) = y(e)u', we have nn — j(h) = j(¢) — j@). The
argument of the proof of [25, Theorem 3.1] shows this. Next we show that (3.22) is injective,
and that the different notions of homotopy agree. It follows from Lemma 3.14, Lemma 1.2
and the definition of ad-homotopy that ad-homomotopic homomorphisms L(E) — R are
M,-homotopic, and from the universal property of kk that j sends homotopic maps to equal
maps. Conversely, let ¢,y : L(E) — R be algebra homomorphisms such that j(¢) = j¥).
Then Ky(¢) = Ko(y), whence there exist for each e € E' elements u, € ¢(ee*)Ry(ee”)
and u, € Y(ee*)Rop(ee*) such that u.u, = ¢(ee*) and u,u, = Y(ee*). Thus u = ), piu, €
d(DHRY(1), u' = Y oepr u, € Y(1)RP(1), and ¢' = ad(u, u’ )y agrees with ¢ on DL(E). Hence
upon spending a 1-step ad-homotopy from ¢ to ¢ if necessary, we may assume that ¢ and
agree on DL(E). Let B = ¢(1)R¢(1) and let u € By be as in Lemma 3.24; we have

w(e) = ugle), e = (e (3.23)

Observe that, because R is purely infinite and K;-regular, the same is true of B. By Lemma
3.29 and K,-regularity of B, there are v € U(By) and U(r) € U(B[t]) such that U(0) = 1
and U(1) = v 'A(v)u~!. Hence, upon using a second 1-step ad-homotopy, we may assume
that u = v~ 'A(v). A calculation shows that y = ad(v)¢. Thus a third 1-step ad-homotopy
concludes the proof of the nonunital part of the theorem. If & is unital, then by Theorem
3.26 there is a unital algebra homomorphism ¢ : L(E) — R such that Ky(¢) = Ko(¥) and
Ki(é)y = Ki(¥)y. The argument used above to prove the surjectivity of (3.22) subsituting &
for 1, shows that there is a unital algebra homomorphism ¢ : L(E) — R such that j(¢) = &.
Finally the same argument used above for nonunital homomorphisms shows that two unital
homomorphisms L(E) — R go to the same element in kk if and only if they are unitally 3-step
ad-homotopic. O

Remark 3.32. By Lemma 3.14, we have that if R and L(E) are as in Theorem 3.31, then
[L(E), MR] is an abelian monoid, with operation induced by the map (3.4), and the canon-
ical homomorphism [L(E), Mo, R] \ {0} — kk(L(E), R) is an isomorphism of groups.
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3.3 Homotopy classification

The main result of this thesis is the following:

Theorem 3.33. Let E and F be finite graphs such that L(E) and L(F) are purely infinite
simple. Let &y : Ko(L(E)) — Ko(L(F)) be an isomorphism. Then

o There exist nonzero algebra homomorphisms ¢ : L(E) < L(F) : ¢ such that Ky(¢) = &,
KoW) = €, ¥ ~u, iduey and ¢y v, 1.

o Ifmoreover &([11k)]) = [11r)] then ¢ and  can be chosen to be unital homomorphisms
such that VIS idL(E) and O/ idL(F).

Proof. Because Ker(/ — A%) and Ker(/ — A}.) are isomorphic to the quotients of Ky(L(E))
and Ky(L(F)) modulo torsion, the assumed isomorphism &, induces an isomorphism &; :
Ker(/ — A}) —> Ker(I - A%). By Corollary 2.23 , there exists ¢ € kk(L(E), L(F)) such that
for the injective homomorphism y : Ker(/ — A%) — K (L(F)) of (3.12), we have Ky(¢) = &
and K (&)yeg = yré. Hence & € kk(L(E), L(F)) is an isomorphism by Proposition 2.11. By
Theorem 3.31 there are algebra homomorphisms ¢ : L(E) — L(F) and ¢ : L(F) — L(E)
such that j(¢) = & and j() = &', which may be chosen unital if & is. Again by Theorem
3.31, ¢y and ¥¢ are M,-homotopic to the respective identity maps. If moreover ¢ and ¢ are
unital, then by Theorem 3.31, ¢y and ¢ are unitally ad-homotopic to identity maps. Hence
by Remark 3.30 there are u € U(L(E)) and v € U(L(F) such that ad(v)¢y and y¢ ad(u) are
homotopic to identity maps. Hence ¢ is a homotopy equivalence. Upon replacing ¢ by the
homotopy inverse of ¢, we get the last statement of the theorem. O

Recall from [8, Chapter III, Section 6.2] that a scaled ordered group is an ordered group
together with a choice of order unit. If R is a unital algebra, then Ky(R) has a natural structure
of scaled ordered group whose positive cone is the image of V(R) and whose order unit is
[1z].

We say that two unital algebras R and S are unitally homotopy equivalent if there are
unital homomorphisms ¢ : R — S and ¢ : S — R such that /¢ and ¢y are homotopic to the
respective identity maps.

Corollary 3.34. Let E and F be finite graphs such that L(E) and L(F) are simple. Assume
that Ky(L(E)) and Ky(L(F)) are isomorphic as scaled ordered groups. Then either
i) thereis 1 < n such that L(E) = L(F) = M,
or
ii) L(E) and L(F) are purely infinite and unitally homotopy equivalent.

Proof. By Remark 3.17 if L(E) is simple but not purely infinite, then there is n > 1 such
that L(E) = M,,. In this case Ko(L(E)) = Z with the usual order and [1,)] corresponds to n.
On the other hand if R is a purely infinite simple unital algebra, then every element of Ky(R)
is nonnegative, by Theorem 3.4. The proof is concluded using Theorem 3.33 and observing
that the identity is the only automorphism of Z as an ordered group. O
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3.4 More on algebra extensions

Let R be an algebra. For x € R™, let supp(x) = {n € N : x, # 0}. For a matrix a € ™' and
i € N, put a;, and a,; for the i row and column, and set
S(CZ) = {Cll‘,j : l,] (S N} C R,
N(a) = sup{#supp(a;.), #supp(a.,) : i € N}.

In Section 1.1 we defined the Wagoner’s cone and suspension

I'R = {a € R™ : each row and column of « is finitely supported}
2R =TR/MR.

We also have the Karoubi’s cone and suspension defined as

I"R={a €TR :#3(a) < oo and N(a) < oo},
S'R = "R/MLR.

Proposition 3.35. Let R be either a division algebra or a purely infinite simple unital algebra.
Then R and 'R are purely infinite simple.

Proof. It suffices to show that if M € 'R\ MR then there are A, B € ['R such that AMB = 1.
The conditions defining " and I' imply that there are infinite, strictly increasing sequences
Y ={yy2...1,N = {N; = I, N,,...} C N such that for each j, 0 # supp(m.,,) C [N, +
I,N;;1]. Let By be the matrix whose n™™ column is the canonical basis element €,.- The
support of the j”-column of the matrix MB; is contained in [N i+ 1,Nj.]. Choose, for
each j, an element x; € [Ny, Njy1] such that (MBy),,; # 0. Let A be the matrix whose
j™ row is the basis element €:;- The matrix A;MB; is diagonal, and all its diagonal entries
are nonzero. Hence by our hypothesis on R there are diagonal matrices A, and B, such that
AA|{MB B, = 1. O

Recall from Lemma 1.6 and the paragraph following it that when R is unital, every exten-
sion of an algebra A by MR is classified by a homomorphism A — XR. By Lemma 1.3, the
sets [A, ZR]y, and [A, X'R]y, are abelian monoids with the sum induced by (3.4). Put

Ext(A,R) = [A,ZR]y,, Ext(A,R); = [A,X'R]y,.

By definition, there is a canonical map Ext(A, R); — &Ext(A, R); by Remark 2.10 there is also
a natural map Ext(A, R) — kk_i(A, R).

Theorem 3.36. Let R be either a division algebra or a Ky-regular purely infinite simple unital
algebra and E a finite graph such that L(E) is simple. Then the canonical maps

Ext(L(E),R)y — Ext(L(E),R) — kk_;(L(E), R)

are isomorphisms. Moreover every nonzero element of each of these groups represents the
M,-homotopy class of a nontrivial extension of L(E) by M (R).
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Proof. Since € is a field,  and 2" are models for the suspension functor. By Proposition 3.35,
2R and X'R are purely infinite simple. Now apply Theorem 3.31 to prove the first assertion.
The second assertion follows from Theorem 3.31 and Lemma 1.6. O

Corollary 3.37. [cf. [16, Theorem 5.3]] For E as in the theorem above, we have
Ext(L(E), ) = Coker(I — Ag).

Proof. Immediate from Theorem 3.36 and the the fact that KH'(L(E)) = Coker(I — Ag)
Formula 2.14. O

Corollary 3.38. Let E and R be as in Theorem 3.36. Then there is an exact sequence
0 — Exty(Ko(L(E)), Ko(R)) — Ext(L(E),R) —
Homg(Ker(I — A%), Ko(R)) ® Homz(Ky(L(E)), K_1R) — 0.
Proof. Immediate from Theorem 3.36 and Corollary 2.23. O

Example 3.39. If R is either € or a purely infinite simple unital Leavitt path algebra, then
K_R =0, so the exact sequence of Corollary 3.38 becomes

0— Ext%(KO(L(E)), Ko(R)) — Ext(L(E), R) — Homg(Ker(I — A%), Ky(R)) — 0.
If furthermore Ko(L(E)) is torsion, then Ker(I—-A7,) = 0, and we get a canonical isomorphism

Ext(L(E),R) = Ext%(Ko(L(E)), Ky(R)).

3.5 Maps into tensor products with 1,

Lemma 3.40. Let E be a graph and let ¢ : L(E) — R be an algebra homomorphism. Then
p~0 = ¢=0.

Proof. 1t suffices to show that if H : L(E) — R[t] satisfies evo H = 0, and v € E°, then
H(v) = 0. This follows from Lemma 3.11. O

A unital algebra R is regular supercoherent if for every n > 0, R[t4,...,1t,] is regular
coherent in the sense of [11].

Lemma 3.41. Let E be graph and R a regular supercoherent algebra. Then L(E) ® R is
K-regular. In particular, L(E) ® L(F) is K-regular for every finite graph F.

Proof. By definition, R, = R[t4,...,t,] is regular supercoherent for every n > 0. Hence by
Example 2.8 the canonical map K.(R, ® L(E)) — KH.(R,® L(E)) = KH.(Ry ® L(E)) is an
isomorphism for every n, whence also K,.(Ry® L(E)) — K.(R,® L(E)) is an isomorphism for
all n. The second assertion follows from the first, using [1, Lemma 6.4.16]. O
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Let R, S be unital algebras. Put
[R,S12[R,S]i ={[f]: f unital }.

Theorem 3.42. Let E be finite graph such that L(E) is simple and R a purely infinite simple
regular supercoherent algebra. Then [L(E), L;]; = [L(E), L]y, \ {0}, [L(E),R ® L], =
[L(E), R ® Ly]um,, and both sets have exactly one element each.

Proof. By Remark 3.17, Proposition 3.16 and Theorem 3.12, [L(E), L,]um, \ {0} has exactly
one element, since j(L,) = 0 in kk; by Corollary 3.19 this element is the class of a unital
homomorphism. Next let ¢,y : L(E) — L, be unital homomorphisms. If L(E) is not purely
infinite, then by Proposition 3.16, ¢ and ¢ are conjugate, and therefore homotopic, since
by Corollary 3.10, mo(U(L,)) = Ki(L,) = 0. If L(E) is purely infinite, then by part ii1) of
Theorem 3.31, ¢ and ¢ are 3-step unitally ad-homotopic. Hence by Remark 3.30 and the
argument we have just used, ¢ =~ . Thus the assertions about homomorphisms L(E) — L,
are proved. It is well-known that the tensor product of a unital simple algebra with a unital
central simple algebra is again simple. By [6, Theorem 4.2], L, is central, so R® L, is simple.
Moreover, R® L, is purely infinite by [7, Theorem 7.9]. Hence using that j(R® L,) = 0 in kk
and applying Lemmas 3.40 and 3.41, Proposition 3.16 and Theorem 3.31, we obtain

[L(E), R ® Ly]m, \ {0} = kk(L(E),R ® L) = 0.

By Corollary 3.19 there is a unital homomorphism ¢ : L(E) — L(F) ® L,. If ¢ is another,
then ¢ ~ by Lemma 3.15 and the argument above. O

Example 3.43. Let R be as in Theorem 3.42, letd : L, - R® Ly, a — 1 ® a and let
¢ : L, - R® L, be any homomorphism. Setting L(E) = L, in Theorem 3.42 we get that if ¢
is nonzero then it is M,-homotopic to d and that if ¢ is unital then it is homotopic to d.
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